
Tom	Schouten
Extended	CV
PDF	(http://zwizwa.be/tom/cv.pdf)
Email	(mailto:tom@zwizwa.be)
Web	(http://zwizwa.be)

I	provide	wide	spectrum	embedded	software	development	services.	I	specialize	in	early	stage	R&D	work	setting	up	an	initial
architecture	and	implementation.

Skills
Fields	of	Expertise

Embedded	Software	Development	(Linux,	bare	metal	uC,	FPGA)
Numerical	Computing	and	Digital	Signal	Processing
Test	Automation
Code	Rescue

Programming	and	Software	Design
Full	cycle	software	development:	domain	study,	problem	analysis,	requirements	gathering,	prototyping,	design	evolution,	testing
and	debugging,	continuous	deployment,	refactoring	in	response	to	requirement	changes,	and	long	term	maintenance
Code	rescue:	simplify	and	refactor	a	"ball	of	mud"	prototype	into	something	that	can	be	evolved	over	time
Object	Oriented	Design
Distributed	Systems
Functional	Programming
Protocol	Design
Domain	Specific	Languages	for	modeling,	validation	and	code	generation
Testing	and	debugging:	strong	intuitive	feel	of	how	things	go	wrong,	and	where	to	focus	effort	while	testing
Web-based	user	interface	development	with	focus	on	embedded	and	real-time
Build	automation	(make,	redo)	and	source	control	(git,	darcs,	SVN,	CVS)
Broad	understanding	of	algorithms	and	eager	to	learn	new	tricks
Mapping	a	problem	across	the	platform	stack:	FPGA	(FSM	+	CPU	design),	assembly,	C,	OS	layers,	high	level	languages,	code
generation	from	high	level	models.
Multithreading:	shared	resource	&	locking,	dataflow,	scheduling,	RTOS	implementation,	message	passing	and	actor	systems.
Reverse	engineering
Code	review
Development	cycle	optimization	in	complex	embedded	systems:	how	to	improve	productivty	through	immediate	edit-compile-run
feedback
Managing	technical	debt	and	"Duct	Tape	Programming"

Programming	languages
Active	non-trivial	use:	C,	Forth,	Lisp/Scheme,	Erlang,	Rust,	Haskell,	Bash,	SQL,	Nix,	JavaScript,	GNU	Make.
Past	non-trivial	use:	Lua,	C++,	OCaml,	Java,	Objective	C,	Perl,	Python,	Matlab,	Pure	Data,	Latex,	MyHDL,	Assembler	for	PIC,	x86,
TMS320C40,	ARM,	PRU.
Explored:	Common	Lisp,	Prolog,	Smalltalk,	TCL,	APL,	J,	Oz,	Fortran,	Fortress,	Faust,	Chuck,	SuperCollider,	Occam,	VHDL,	Assembler
for	AVR,	MIPS,	PPC,	Z80,	HC11,	TMS320C6x,	...
Created:	PF,	SC,	Staapl,	DSPM,	RAI,	Seq,	PRU	and	the	minimal	Seq	control	CPU	instruction	set.

Language	/	Runtime	/	Compiler	design
Lifelong	student	of	programming	languages,	runtimes	and	compiler	design.
Language	implementation	in	C,	Forth,	Scheme	(Racket),	JavaScript,	Haskell,	OCaml.
Implementation	of	minimalistic	OS	for	bare-metal	microcontrollers	(Staapl	on	PIC,	uc_tools	on	Cortex	M),
Virtual	Machines	for	soft	real-time	Audio/Video	systems	(PDP,PF,libprim	on	PC,Android).

Operating	systems	and	environments

http://zwizwa.be/tom/cv.pdf
mailto:tom@zwizwa.be
http://zwizwa.be/


Operating	systems	and	environments
GNU/Linux,	current	focus	on	Debian,	Nix,	Buildroot	and	OpenWRT
Linux	APIs:	Linux	audio/video	APIs,	OpenGL,	Posix
Linux	kernel	and	the	Xenomai	real-time	extension
Erlang/OTP,	rebar,	and	cross-language	interfaces	(ports	and	ETF)
Some	experience	with	Android,	OSX,	eCos	RTOS	(ARM),	MS	Windows
The	Web	platform:	server	side	HTTP,	SQL	and	client	side	HTML,	CSS,	JavaScript,	WebSockets,	framework	design.
Haskell	on	Nix	(cabal2nix)
Rust	and	Cargo
GNU	binutils/GCC/GDB	toolchain
GNU	Make,	redo,	and	incremental	build	+	test	+	deployment	system	design
Soft	and	hard	real-time	systems
Bare	metal	microcontrollers	and	DSPs
Low-level	bit	twiddling
Digital	logic	on	FPGA
Device	driver	implementation
Virtualization:	VmWare,	Qemu/KVM,	LXC
Linux	system	administration:	Apache,	MySQL,	Asterisk,	Exim,	OpenVPN,	SSH,	Borg	backup	...

Numerical	and	Signal	Processing
Continuous	and	discrete	time	signal	processing	theory,	Laplace,	Z-transform
Linear	algebra,	FFT,	SVD,	Wavelets
FIR	and	IIR	filter	design	and	implementation
Noise	reduction,	echo	canceling
Control	theory	for	linear	and	non-linear	systems,	Kalman	filters
Optimization	theory,	statistics,	information	theory,	communication	and	digital	codes
2D/3D	computer	graphics,
Basics	in	software-defined	radio,	classical	mechanics,	computer	vision	and	generic	numerical	algorithms
Good	understanding	of	audio	effects	and	post-production	processing,	sound	synthesis
Fixed	point	and	floating	point	numerical	code	implementation
Bridge	to	implementation	and	testing:	abstract	interpretation,	automatic	differentiation,	and	code	generation	for	C,	assembly,
Verilog	targets.

Electronics
Basic	familiarity	with	analog	and	digital	electronics,	theory	and	practice
Simple	analog	and	digital	circuit	design	and	PCB	layout	(gEDA	suite)
Circuit	debugging	using	oscilloscope,	logic	analyzer	and	test	code
FPGA	digital	logic	design	using	MyHDL,	Verilog,	and	in-house	Seq	Haskell	eDSL

Team	Integration
I've	had	the	honor	of	working	with	an	diverse	set	of	people	from	all	over	the	globe.	People	with	different	ideas	about	how	to	design
software,	how	to	run	a	team,	and	how	to	balance	code	quality,	feature	set	and	delivery	time.
I	care	and	I	finish	what	I	start.
Worked	in	co-located	teams,	globally	distributed	teams,	loosely	knit	open	source	communities	and	as	a	solo	developer/researcher
Wrote	user	manuals,	code	documentation,	informal	articles	and	scientific	papers
Gave	presentations	and	played	the	role	of	tutor	on	development	teams	and	in	more	formal	workshops.
My	mother	tongue	is	Dutch	and	I	speak	native-level	English	with	a	mixed	Flemish	/	Midwestern	accent.	I	can	read	and	understand
spoken	French	and	German	for	technical	content.

Project	History
Undisclosed	(June	2019	-	present)
System	design	consulting,	ATSAMA5	board	bringup,	Linux	network	driver	debugging,	and	STM32F103	bare	metal	firmware	design	and
implementation	for	a	real-time	data	communication	module.	This	is	for	an	undisclosed	Belgian	stealth	startup.

Humanetics	ATD	(November	2014	-	present)
Software	system	architecture	and	implementation	and	assistance	with	hardware	design	for	data	acquisition	systems	in	a	small	team.	I
gained	experience	with	managing	the	bringup	and	evolution	of	the	software	and	digital	logic	for	a	complex	heterogenous	system:	FPGA,
microcontrollers,	application	processors,	embedded	Web	server,	build	and	deployment	system.

Zwizwa	(November	2010	-	present)
Solo	R&D	work.	The	open	source	projects	are	described	elsewhere.	This	interleaves	payed	contract	work.

Study:	Digital	and	Analog	circuit	design,	Digital	Signal	Processing	theory,	Programming	Language	theory,	exploration	of	various
open	source	tools.
DSL	(Domain	Specific	Language)	projects	in	Haskell	(asm_tools,	DSPM)	and	Racket	(Staapl,	RAI).
Development	of	support	libraries	for	embedded	systems:	uc_tools,	erl_tools
Development	of	exo,	an	IDE	/	network	OS	written	in	Emacs	and	Erlang,	taylored	to	heterogenous	distributed	systems	development
(Linux,	Cortex	M,	FPGA	and	many	different	languages:	C,	Rust,	Erlang,	Haskell,	SQL,	HTML,	CSS,	JavaScript).

Emweb	/	Fike	(January	2014	-	December	2015)



Emweb	/	Fike	(January	2014	-	December	2015)
Design	and	implementation	of	a	production	test	framework	for	a	real-time	industrial	monitoring	product.	Full	software	responsibility.
Host	software	in	Python,	test	board	dsPIC	firmware	in	C.	Tasks	included	debugging	test	board	hardware,	making	circuit	modifications,
original	analog/digital	test	circuit	design,	creating	GUI	and	database.

Beep	(July	2013	-	November	2013)
Early	stage	consulting	for	an	MVNO	startup.	Tasks	involved:	exploring	telco-related	technical	specifications,	developing	ISO7816-4
firmware	for	the	Sysmocom	SIMtrace	AT91SAM7,	and	building	an	early	application	prototype	in	Python.

Ubidata	N.V.	(July	2010	-	March	2013)
I	developed	firmware	for	an	application	in	the	field	of	fleet	management	and	remote	data	I/O	running	on	AT91SAM7	and	PIC16F.	I
worked	on	site	for	3	months	to	get	a	redesign	of	an	early	prototype	started,	and	continued	remotely	after	moving	to	the	U.S.	I	worked
as	part	of	a	3-4	people	team	of	experienced	embedded	developers.	The	job	spanned	the	full	product	life	cycle,	including	the
maintenance	of	a	remote	embedded	system.

Zwizwa	(April	2010	-	July	2010)
Development	of	DSPM,	a	Haskell	eDSL.
Reactive	dataflow	framework	for	sweb	in	Racket.
Study:	classical	mechanics	and	DSP	theory

Sony	Techsoft	Centre	Europe	(November	2009	-	March	2010)
I	was	hired	by	Sony's	software	division	in	Brussels	for	a	contracting	job	requiring	Linux	system	programming	experience	and	signal
processing	skills.	The	product	was	a	test	system	for	Sony-specific	media	framework	modifications	to	the	Android	OS.	This	work	involved
coordination	with	development	departments	in	Belgium,	Japan	and	China.

Zwizwa	(March	2009	-	October	2009)
Continuation	of	development	of	Staapl,	sweb	in	Racket.
Study	of	programming	language	theory	and	implementation.
Development	of	libprim	in	C,Scheme.

Triphase	N.V.	(October	2008	-	March	2009)
Triphase	is	a	Belgium-based	startup	working	in	the	area	of	rapid	prototyping	tools	for	energy	conversion	systems.	I	was	hired	for
Linux/Xenomai	driver	development	for	EtherCat	and	CANbus	systems.	Aside	from	that	I	suggested	and	implemented	some	changes	to
their	core	product,	adding	configurability	to	the	architecture.	I	gained	experience	with	embedded	PC	hardware,	Debian,	Linux,	Xenomai,
field	busses,	and	Matlab/Simulink	Real-Time	Workshop.

Zwizwa	(December	2007	-	October	2008)
Refactoring	of	the	Staapl	system	based	on	insights	gained	from	its	use	in	the	Waag	project,	and	new	insights	in	the	use	of	Racket	as
a	system	for	designing	domain	specific	languages.
A	short	consulting	project	involving	PF	and	a	computer	vision	problem
Development	of	sweb,	weblog	software	with	Latex	support	used	in	my	development	logs

Waag	Society	(October	2007	-	December	2007)
Artist-in-residence	program	at	Waag	Society	in	Amsterdam,	institute	for	art,	science	&	technology.	This	was	a	collaboration	with
Metabiosis/GOTO10.	The	project	consisted	of	building	the	platform	for	an	art	installation,	consisting	of	a	collection	of	glowing	orbs,
communicating	amongst	each	other	using	digital	data	transmitted	over	sound	waves	(OOK,	PSL).	The	system	used	Staapl	and	PF.

The	Packets	Project	(October	2005	-	October	2007)
A	two	year	project	aimed	at	building	tools	for	media	artists.	I	was	at	that	time	part	of	the	GOTO10	media	art	collective.	The	project	was
funded	by	the	School	of	Art,	Design	and	Architecture	at	the	University	of	Huddersfield.	Work	included	development	of	Packet	Forth	(PF),
Staapl,	CatKit	(a	Staapl	PIC18F	dev	board),	workshops,	and	technical	support	for	the	Metabiosis	media	art	installation,	written	in	PF.

Zwizwa	(April	2003	-	October	2005)
Start	of	solo	R&D	project	work,	mostly	open	source	libraries:

PDP,	a	video	processing	extension	for	Pure	Data.
Creb,	a	library	of	audio	processing	modules.
PF,	a	prototyping	language	for	video	and	computer	graphics.
Staapl	(then	called	Brood),	a	low-level	microcontroller	metaprogramming	system.

Next	to	software	development,	I	lead	hands-on	workshops,	and	gave	invited	talks.

Arboretum	Systems	(October	2001	-	March	2003)
Part	of	a	small	software	development	team	working	on	maintaining	legacy	audio	processing	software,	integrating	company	IP	in	third
party	systems,	and	developing	new	audio	effects.

SISTA	lab,	KULeuven	(October	1998	-	August	2001)
Research	assistant	in	the	field	of	signal	processing	for	musical	applications.	Topics:	Piecewise	stationary	signal	models	for	audio	signal
modifications,	pitch-synchronous	dynamic	wave	table	synthesis,	scanned	synthesis,	subspace	based	frequency	estimation	techniques,
evaluation	of	trade-offs	involved	in	FFT	window	design	for	additive	sinusoidal	synthesis,	and	alias-free	synthesis	of	discontinuous
waveforms	using	discrete	state	updates	to	a	bank	of	damped	oscillators.



Open	Source	Projects
This	is	a	chronological	list	of	the	projects	I've	put	online,	most	recent	first.	The	thread	that	runs	through	these	is	the	synergy	between
embedded	software,	digital	signal	processing,	and	development	tools	focusing	mostly	on	domain	specific	languages	and	interactive
incremental	development.

asm_tools	(http://github.com/zwizwa/asm_tools)	Haskell	eDSL	library	including	two	instrumented	macro	languages:	Seq	for
sequential	logic,	and	PRU	for	the	AM335x	deterministic	embedded	control	processor.	It	uses	a	final	tagless	eDSL	representation	to
implement	validation	and	code	generation	from	the	same	description.	Basically,	QuickCheck	for	machine	code	and	digital	logic.
uc_tools	(http://github.com/zwizwa/uc_tools)	A	collection	of	C	macros	for	writing	malloc-less,	static-allocation	state	machines,	and	a
minimalistic	monitor	OS	based	on	GDBSTUB.
erl_tools	(http://github.com/zwizwa/erl_tools)	Erlang	support	library	for	embedded	systems	applications,	with	some	native	C,	Rust
and	JavaScript	components.
studio	(http://github.com/zwizwa/studio)	An	Erlang	MIDI	studio.	It	supports	incremental	development	of	Audio	sythesis	and
Audio/MIDI	processing	software.
RAI	(http://zwizwa.be/rai),	short	for	Racket	Abstract	Interpretation,	is	a	Domain	Specific	Language	(DSL)	for	analysis	and
implementation	of	audio	signal	processing	algorithms.	Its	main	goal	is	to	marry	the	process	of	mathematical	modeling	and	the	low-
level	implementation	of	algorithms.
DSPM	(http://zwizwa.be/darcs/meta/dspm/dspm.html).	Precursor	to	RAI.	This	project	explores	the	use	of	tagless-final	embedding	of	a
typed	DSL	into	the	Haskell	programming	language,	exploring	the	idea	of	typed	metaprogramming.
SISO	(http://zwizwa.be/darcs/meta/siso/DSPM_RAI.txt).	Tagless-final	embedding	of	state	space	models	in	Haskell,	based	on
Applicative	Functors.	Based	on	ideas	behind	DSPM	and	RAI.
Staapl	(http://zwizwa.be/staapl)	is	a	metaprogramming	tool	based	on	Forth	and	Scheme.	It	uses	the	Microchip	PIC18	architecture.
Staapl	contains	a	tiny	8-bit	sound	synthesizer	running	in	2K	of	Flash	which	serves	as	test	for	the	compiler,	and	a	driver	for
generating	PAL	TV	signals,	used	in	the	ForthTV	workshop[1]	(http://www.youtube.com/watch?v=M-UUbm_K9sw)	[2]
(http://www.youtube.com/watch?v=cNdic7pe5UU).
libprim	(http://zwizwa.be/-/libprim),	a	library	for	building	small	dynamically	typed	programming	languages.	Consists	of	a	collection	of
OS	abstractions,	basic	objects,	a	simple	garbage	collector,	a	Scheme	interpreter	and	a	rework	of	the	PF	core	language	and	virtual
machine.
sweb	(http://zwizwa.be/-/sweb),	a	Racket-based	web	application	hosting	my	web	logs	with	support	for	rendering	posts	of
mathematical	nature	written	in	Latex.	The	design	is	based	on	a	reactive	programming	engine.
Packet	Forth	(http://zwizwa.be/packetforth)	(PF),	a	stand-alone	dynamically	typed	scripting	language	taking	ideas	from	Forth	and
Scheme,	aimed	at	video	processing	using	C-based	signal	processing	code	plugins.
Creb	(http://zwizwa.be/pd/creb/),	an	extension	for	the	computer	music	system	Pure	Data	(http://http://puredata.info).	Creb	adds
building	blocks	for	music	DSP	that	were	missing	in	Pure	Data,	or	are	the	result	of	my	research	on	audio	synthesis	techniques.
Pure	Data	Packet	(http://zwizwa.be/pd/pdp/overview.html)	(PDP),	another	extension	for	Pure	Data,	which	adds	building	blocks	for
image	and	video	processing.
Pyla	(http://github.com/zwizwa/pyla)	real-time	protocol	analyzer	with	support	for	the	Saleae	Logic.	Written	in	Python	combined	with
C++/Swig	for	the	analyzer	modules,	and	LARS	(http://github.com/zwizwa/lars),	a	Rust	port	of	Pyla.

For	a	complete	list,	see	the	darcs	(http://zwizwa.be/darcs)	and	git	(http://zwizwa.be/git)	sections	of	the	web	site,	which	also	hosts	the
associated	notes	(http://zwizwa.be/-/topics).	Some	projects	are	mirrored	on	github	(https://github.com/zwizwa).

http://github.com/zwizwa/asm_tools
http://github.com/zwizwa/uc_tools
http://github.com/zwizwa/erl_tools
http://github.com/zwizwa/studio
http://zwizwa.be/rai
http://zwizwa.be/darcs/meta/dspm/dspm.html
http://zwizwa.be/darcs/meta/siso/DSPM_RAI.txt
http://zwizwa.be/staapl
http://www.youtube.com/watch?v=M-UUbm_K9sw
http://www.youtube.com/watch?v=cNdic7pe5UU
http://zwizwa.be/-/libprim
http://zwizwa.be/-/sweb
http://zwizwa.be/packetforth
http://zwizwa.be/pd/creb/
http://http//puredata.info
http://zwizwa.be/pd/pdp/overview.html
http://github.com/zwizwa/pyla
http://github.com/zwizwa/lars
http://zwizwa.be/darcs
http://zwizwa.be/git
http://zwizwa.be/-/topics
https://github.com/zwizwa


Education
1998-2001
Graduate	courses	and	seminars	@	KULeuven,	Belgium:	optimization	theory,	statistical	learning	theory,	neural	networks,	system	theory,
identification	and	control,	numerical	algorithms,	computer	architecture	and	advanced	signal	processing.

1993-1998
Master	of	Electronics	Engineering	(Burgerlijk	Elektrotechnisch	Ingenieur)	at	the	KULeuven,	Belgium,	with	a	major	in	Digital	Signal
Processing.

1987-2017
Autodidacticism.	I	acquire	most	of	my	skills	by	following	curiosity.	This	is	a	short	summary	of	the	path	I	followed.

1987-1989	MSX	BASIC,	Z80	assembler
1989-1991	MS-DOS,	Pascal,	DEBUG.COM,	8086	asm	&	arch
1991-1993	Borland	Turbo	C/C++	&	Debugger,	80386	asm	&	arch,	2D/3D	graphics,	sound
1993-1997	Electronic	music,	hardware	synthesizers,	analog	&	digital	electronics
1997-1998	Linux:	RedHat,	Suse,	Debian,	system	administration
1998-2000	C++,	Matlab,	Perl,	wrote	an	audio	synthesizer	engine
2000-2002	Pure	Data,	computer	music	&	signal	processing,	GCC/GDB,	Linux	development,	wrote	creb
2002-2004	Python,	emacs,	video	processing,	wrote	PDP
2004-2006	Forth,	Scheme,	language	&	VM	design,	wrote	PF
2006-2008	OpenWRT	and	embedded	Linux,	Microchip	PIC	asm	&	arch,	ColorForth,	compiler	design,	wrote	Staapl,	sweb
2008-2010	Scheme	(Racket)	and	programming	language	theory,	wrote	libprim
2010-2012	Haskell,	type	theory,	and	domain	specific	language	design,	wrote	DSPM
2012-2013	back	to	DSP	theory,	wrote	RAI:	a	language	for	DSP	algorithm	design
2013-2014	Python	Qt	GUI	and	MySQL,	SQLite	database,	wrote	Pyla,	Staapl	development
2014-2017	Erlang,	MyHDL	(+	VHDL/Verilog),	Analog	Electronics,	RAI	&	Staapl	tweaks,	wrote	SISO
2017-2019	Erlang,	Rust,	Haskell,	Buildroot,	digital	logic,	Web	technology.	Focus	on	integration	and	incremental	development	of
heterogeneous	distributed	systems:	Linux	boxes	+	bare-metal	microcontroller	leaf	nodes.

The	most	recent	version	of	this	document	can	be	found	here	(http://zwizwa.be/tom/cv.html).

http://zwizwa.be/tom/cv.html

