
The Sheep

TOM SCHOUTEN

November 1, 2007

Abstract

This document talks about The Sheep, a simple 1–bit synth im-
plemented in Purrr. Its main purpose is to illustrate the use of Purrr
(and more generally Forth) in the construction of a domain specific
language.

1 Bottom Up Programming

The basic idea behind bottom up program design is to gradually increase
the level of abstraction by writing a high level language in terms of a low
level one. This might sound scary, but in a language like Forth (or Lisp) it
is actually quite straightforward: a more abstract language layer looks the

same as the lower level one, it just carries more highlevel meaning.
A language layer is a merely collection of high level words, which in Purrr

are procedure and macro words. The basic idea is to hide the implementation
of these words from the programmer using them. These words comprise an
interface: programming is made simpler because the programmer using the
interface does not need to worry about how the details are implemented, and
uses only the words provided in the interface. Such an interface is sometimes
called an Application Programmer Interface or API. A language layer is
sometimes called a code library.

What bottom up programming provides is a mechanism for program com-
ponent decoupling. The usage of interfaces makes it possible to change one
part of the program without having to change other parts. Because it is sim-
ply impossible to oversee all the details of any sufficiently useful program all
the time, decoupling is the only hope we have at all to write working softare.

1



It becomes interesting part is when the programmers at the two sides of
the API, when the one that knows the details, and the one that does not,
are the same person! Once you can trick yourself into switching between
abstraction layers, once you start making contracts with yourself, programs
suddonly becomes a lot easier to manage. One way of doing this is to make
interfaces explicit.

In Purrr, it is not necessary to use explicit interfaces. This is both good
and bad: it takes away the red tape of being obligated to always draw the line
between two sides of an interface. This can be an impediment to early stage
code evolution. However, when you have things worked out, it is usually a
good idea to chop them in pieces: literally put them in different files, and
force yourself to only use clearly defined interfaces.

In the following I will illustrate this principle by talking about the im-
plementation layers in the Sheep synth, gradially moving from a low to high
abstraction.

2



2 The Sheep Primitives

I start with the low level synth engine as a given. The API consists of the
words below.

engine-on \ --

engine-off \ --

synth \ variable: containing the synth patch

posc0l \ variable: low byte of OSC0 period

posc0h \ variable: high byte ...

posc1l \ same for OSC1

posc1h

posc2l \ same for OSC2

posc2h

The synth patch is a byte with the following bit fields.

01 \ mixer: silence, xmod, reso, osc1

4 \ sync:0->1

5 \ sync:0->2

6 \ sync:1->2

7 \ osc1:noise

The first two bits determine one of four mixing algorithms. The sync bits
determine phase reset synchronization between the 3 oscillators, and the last
can set oscillator 1 in noise generation mode.

This is all there is: at the lowest level, the synth patch language is merely
a couple of configuration variables, and two words implementing an on/off
switch. As a programmer, you do not have access to the internals of the
synth engine beyond these words without changing the low level code in
synth-core.f and recompiling.

This API is still quite low level. However, it does succeed in providing
a very concise view of the synth algorithm. We get a simple way of pro-
gramming a synthesizer machine, but in order to get there we give up the
capability to perform arbitrary algorithms. By abstracting the problem do-
main (make some noise), we limit the number of possible solutions we can
use, but greatly simplify the expression of a useful set of solutions. We give
up full control but instead simplify the problem to the configuration of a
task that runs in the background. The API provided is a set of configuration

3



variables, and a simple on/off switch. The great challenge in programming
is to find the right kind of abstractions by simplifying and generalizing the
problem.

So let’s move on to the next level of abstraction. In the file synth-control.f
there is a collection of words and macros that manipulate the configuration
variables in a more high–level way. I declined to mention a complication
in the interface. Because the synth engine updates are implemented as an
interrupt service routine or ISR which responds to timer interrupts, care has
to be taken that the state update is performed in a way that ensures the ISR
can see only a consistent state. A timer interrupt can happen at any time,
so if some part of the program is changing the 2 state variables associated
with the oscillator period, there is a possibility that an interrupt occurs af-

ter writing one of the bytes, but before writing the other. In other words:
writing the 2 period values should be governed by a word that can ensure
the operation happens atomically, meaning the intermediate state is never
visible to the ISR. This can be done by disabling interrupts during the write.

This is called a leaky abstraction: the period variables are a nice way
to represent the synth config, but using them is still cumbersome, because
we need to know what rules to follow. So what do we do? We abstract
the problem! In the synth-control.f file there are a couple of words that
perform the correct operation for writing to period registers, without having
to worry about this interrupt business:

_p0 \ lo hi -- | write lo an hi period bytes for OSC0

_p1 \ lo hi --

_p2 \ lo hi --

In Purrr, if a word starts with a underscore it will produce and/or consume
double values. I.e. in the 8–bit Purrr18, this means two bytes to represent
16-bit values. For ease of use, there are 8–bit variants of these words:

p0 \ hi -- | write lo an hi period bytes for OSC0, OSC1

p1 \ hi -- | and OSC2, but compute those from a single byte

p2 \ hi -- | by multiplying it with 257

The number 257 is chosen so a single byte can represent the entire range of
a 2–byte number. It’s also simple to impelmement: multiplication by 257 is
the same as multiplication by #x101 and thus a simple dup will do the trick.

4



Similarly words can be defined to facilitate the interaction with the words
_p0, _p1 and_p2 themselves. One extension uses a table internally to convert
note and octave numbers to periods

octave \ o -- | set the current octave.

note0 \ n -- | set OSC0, OSC1 and OSC0 to a frequency

note1 \ n -- | corresponding to a note in the current octave,

note2 \ n -- | counting from 0 -> C, 1 -> C#, ...

Of course, it is not only possible to write to the period registers. Some
algorithms might find a need to update the current period instead of setting
it, i.e. portamento. The following words retreive the double words for each
period. It is also possible to read from the period variables directly. Because
the ISR never changes these registers, it is safe to read the period registers
directly. However, for symmetry it might be nicer to use the following words:

_p0@ \ -- lo hi | return the contents of period register for

_p1@ \ -- lo hi | OSC0, OSC1, and OSC2

_p2@ \ -- lo hi |

For the variable synth we do the same: define a couple of words that set
individual bits in the synth algorithm. For example

: reso \ --

mix:reso

sync:0->1 bit

sync:0->2 bit synth !

_p0@

_>> _dup _p2 \ half max reso

_>> _p1 ; \ reso freq 4x

To create a value to store in the synth variable, start with the mixer value.
Then use the word bit to set individual bits in the word on the top of the
stack. When done, store the variable. For this particular synth config, we
take the period value of OSC0, divide it by 2 and store it in OSC2’s period
register, then divide it by 2 again and store that result in OSC1’s period
register. As mentioned before, there are 4 different mixer algorithms, and
they are named using

5



macro

: mix:silence 0 ;

: mix:xmod 1 ;

: mix:reso 2 ;

: mix:osc1 3 ;

forth

In synth-control.f there are some more words that change the synth config
in a similar manner:

: silence \ -- | no sound

: reso \ -- | fake resonant / formant wave

: noise \ -- | noise

: square \ -- | square wave

: xmod2 \ -- | 2 OSC cross modulation

: xmod3 \ -- | 3 OSC cross modulation

: rxmod \ -- | random cross modulation

: pwm \ period -- | pulse width modulation

: _pwm \ lo hi -- | same for 16 bits

3 Hierarchical Time

Next to the 3 oscillator, there is something else that involves oscillating
things: the 4th timer in the PIC18 is used to drive a fixed rate oscillator. On
each tick a 32–bit counter is incremented. The counter value is stored in 4
variables tick0 to tick3.

Have a look at this table which reflects binary increment from 0 to 7.

000

001

010

011

100

101

110

111

Notice that in each row, the bits change value with a period that is the
double of that of the right neighbouring column. This counter is a cheap

6



source of events we can sync to, spanning an enormous range of frequencies.
The sync-tick word takes a single argument indicating which bit in the tick
timer it will synchronize on: it simply waits until that particular bit exhibits
zero to one transition. The counter is updated at a frequency of 7812 Hz =
2MHz / 256, which means bit 0 has a frequency of 3906Hz. For each bit to
the left, the frequency halves. From this set of frequencies we choose 2:

: wait-note 9 sync-tick ; \ 7.8 Hz

: wait-control 4 sync-tick ; \ 244 Hz

Control rate is the rate at which timbre modulations could take place, while
note rate is the duration of a 1/16th note at 117 BPM. This fixed relation
between frequencies can be a limitation, especially for the note rate, but it
severely simplifies the implementation. Note that it is possible to vary the
frequency that drives the timer network as a whole.

So, to play with time, we need to change parameters at the proper time
instances. A way to do this is to simply put a synchronization word in a
loop:

: siren

begin

wait-note square \ ...

wait-note siren \ ...

again ;

The important thing to see here is that there is is a loop with an alternating
sync and action part. When you want to create words that have synchro-
nization built in, where do you put the sync part? Before or after the action?
This depends on how you want to combine them. We’ll see in the next sec-
tion that the best place is inbetween, since that leads to easier composition
of hierarchical time scales because it avoids shared synchronization points.

4 Sound Generators

[EDIT: Explain this better: disentangle tasks, syncrhonization and vectors.]
The Sheep is a binary output monosynth. Because mixing of sounds in

the conventional way is as good as impossible, the only thing we can do to
make the sound vary over time. Let’s simplify the problem by splitting it up

7



into two parts. We’re going to build a collection of sound generators and a
trigger controller.

A sound generator is an infinite loop that produces an evolving sound
synchronized to events from the hierarchical timer. At each instance, there
is only one sound generator active. The trigger controller activates different
sound generators, also based on the hierarchical time. The difference be-
tween the two is that a virtual sample can be started and stopped by trigger
controller.

This approach requires multitasking, since there are two separate threads
of control: an infinite loop that generates sound, and control loop that can
change the current sound task. This multitasking is implemented in the
synth-soundgen.f file and uses functionality from pic18/task.f. The in-
terface to the sound generator player consists of variable sound which con-
tains a vector, and a word bang which restarts the sound generator stored in
sound. A vector is variable that contains a code address. The code pointer
stored in sound is a loop that changes the synth configuration while synchro-
nizing on hierarchical timer events. For example, a sound consisting of an
alternation of a square wave and a noise birst can be implemented as:

: sync-mod

7 sync ;

: wobble

sound -> begin

square 50 p0 sync-mod

noise sync-mod

again

The word sync is like the word sync-tick mentioned before, but instead of
just waiting for an event, it also passes control back to the bang controller
task, which in turn will pass control back to the sound generator task when
it is done. The word -> (arrow) consumes a variable which contains a vector,
in this case the vector used to point to the current sound generator, and sets
it to point to the code after the arrow. Note that when wobble is executed,
the loop code following the arrow does not execute. The word wobble merely
sets the value of the variable sound. The next time when bang is executed,
the loop wil start running (as long as the trigger controller runs).

8



To run this sound generator, you need to drive it with a controller loop.
A very simple one could be:

: note-sync

9 sync

: notes \ n -- | number of notes to run synth

wobble bang

for note-sync next

silence ;

Then running 10 notes or, to avoid timeout notices, 10 start notes—, gives
the wobbly sound. The idea is that whenever a sync operation runs, the
other task is activated to see if it needs to update something, so as long
as you don’t execute any sync operations from the primary task, which is
commanded by the console, the sound generator task will not run.

To sum up, a small note about tasks. Each task has its own execution
context, which consists of a return stack, a data stack, an auxiliary stack,
and a separate copy of the a and f registers which point to RAM and Flash
memory respectively. Usually, the word yield switches between tasks: it
invokes a scheduler that saves the task that gives up control (the one calling
yield) and wakes up another one. In our case, yield is very simple: it just
switches between tasks. Now, for the sound generator, the magic happens in
the sync word: this word calls yield before checking if the synchronization
condition is true, and looping in case it is not. The idea is that while one
task is waiting for an event, it passes control to another task. This is called
cooperative multitasking.

5 Pattern Programs

[EDIT: already explained vectors at this point, so just build on top of it]
Instead of writing words which perform an entire piece in the way ex-

plained above, where all the parts have to be expressed statically before-
hand, it might be interesting to add some dynamic binding : the ability to
change behaviour of words (names) at run time. Note that Purrr is inten-
tionally a strictly static bottom up language: once you compile code, you
cannot change its meaning. You can write new code on top of old code, but
changing a lower level inadvertently means recompiling the program.

9



This is problematic. However, it is straightforward to introduce dynamic
behaviour by using byte codes. A byte code is a number which represents a
certain behaviour. The idea is that the relationship between a number and
its associated behaviour (word) is staticly fixed, but the numbers themselves
can be stored in variables and thus modifed. This effectively creates a virtual

machine. The numbers can be seen as instructions of a machine which is
defined by the mapping from numbers to words.

Let’s make this a bit more concrete. Suppose we want to create a lan-
guage for expressing time sequence patterns to use in the Sheep synth. The
objective is to have something that looks like a list of words. One way to
implement this is to use a multitasking engine, however in this case that
would be overkill since there is a simpler approach using the route word.
This word performs a map from numbers to code by implementing a jump
table.

: somewhere \ n --

route

left ; right ; up ; down ;

The word somewhere accepts a number which it maps to behaviour. In this
case 0 is mapped to left, 1 to right, . . .What route actually does is to
skip a number of machine instructions. It so happens that a word followed
by a semicolon is exactly one machine instruction: a jump to the code that
implements that word. So route indicates the start of a jump table. The end
result is that we can write code that does something based on a variable

that can be changed at run time. For example

variable direction

: go direction @ somewhere ;

Now go will perform one of 4 behaviours depending on the value of the
variable direction.

Let’s use this to build a pattern sequencer. Suppose the word drum exe-
cutes some synth reconfiguration event. A way to build a pattern sequencer
is to create a map from a variable time to behaviour. Like this:

variable time

: wicked time @

route

drum ; drum ; drum ; drum ;

10



drum ; ; ; ;

drum ; drum ; ; drum ;

drum ; ; drum ; ;

Note that a semicolon all by itself is just a RETURN instruction and thus
does nothing. Let’s clean that up a little. This implements a word wicked

with a time varying behaviour, assuming the variable time has the current
time stored.

In general, when the words in a route table change the value of the
variable on which is dispatch, this pattern is called a state machine. Here the
state needs to be set by the caller of wicked, and will be a simple increment.

For convenience, let’s limit the size of the patterns to 16. One thing I
neglected to mention is that you can easily jump off the end of a jump table
if the number is too big. Solve this by performing an #x0F and operation
after fetching the byte. In that case one never has to worry about the value
being out of range, and incrementing time is just time 1+!, resulting in a
looping pattern.

Now, let’s introduce some macros. Note that a macro is just an abbrevi-
ation which is not instantiated as machine code, but always inlined. Macros
can be used to factor out code that can not be abstracted in a procedure
definition. In the following code the words exit and route interfere with
straight line procedure control flow, and thus have to be abstracted in macros.
Also note that exit is an alias for the semicolon word that does not have
the special meaning of terminating a macro definition.

variable time

macro

: o drum exit ;

: . exit ;

: pattern time @ #x0F and route ;

forth

11



This leads to the definition of a pattern as:

: wicked

pattern

o o o o

o . . .

o o . o

o . o .

That’s an ASCII art GUI for creating wicked sequencer patterns!
Let’s make this a bit more useful. The drum word above was only vaguely

defined. Is it possible to change the meaning of that word at runtime? Sure,
as long as we find a way to store its behaviour in RAM. We could create a
byte code map for drum as we did for the somewhere word above, but let’s
try something different.

If you want to store the representative number of a small collection of
words in a lot of different places, byte codes are a good idea. If you want to
modify the behaviour of a small number of plug–in words, vectors are a better
match. In Purrr a vector is represented by 2 bytes, making the variable a
2variable. Vectors can be set using the -> word. The code following the
arrow is what the vector will point to when the word in which the arrow
occurs is executed. Vectors can be run using the invoke word

2variable drum

: drum drum -> stuff init-drum ;

: hihat drum -> other-stuff init-hihat ;

: do-drum drum invoke ;

macro

: o do-drum exit ;

forth

Excuting the drum word would merely set the variable drum to point to the
code sequence stuff init-drum. The sequence drum wicked would exe-
cute the time–variant word wiked defined earlier with o bound to the code
following the arrow in the drum word. The the effect of drum is to change
the dynamic environment in which the word wicked runs. This way we can
combine two program elements: the current instrument, and the pattern
used.

12


