
Purrr

TOM SCHOUTEN

November 2, 2007

Abstract

Purrr is a Forth dialect specifically tailored to flash ROM based

microcontrollers. A Forth typically enables direct low–level machine

access in a resource–friendly way while providing a solid base for con-

structing high–level abstractions. Purrr includes a purely functional

compositional macro language for meta–programming. The Purrr im-

plementation consists of an optimizing cross–compiler and a live in-

teraction interpreter, both running on a host PC system. Purrr’s live

interaction interpreter supports an incremental, bottom up program-

ming, testing and debugging style. The current Purrr implementation

supports the 8–bit Microchip PIC18 architecture.

1 Introduction

This manual documents the Purrr macro language and its live interaction
system. Purrr is a Forth dialect built as a collection of composable macros
implementing a stack machine model as a thin layer atop a concrete machine
architecture. The interaction system provides a command console for live
machine interaction and incremental compilation of Forth code.

This manual is intended for an audience somewhat familiar with Forth
and assembly programming. It is not necessary to be an expert in either. If
you are looking for a tutorial, have a look at the Purrr[1] website.

1.1 Expansion and Contraction

To understand Purrr from a high level, it is good to start with the substitu-
tion model of code translateion. A Purrr program is essentially a collection

1

of macros which will be instantiated : it will eventually be translated to exe-
cutable machine code.

A string of words, which are textual entities separated by whitespace, can
be expanded to another string of words by substituting each word with its
definition. This process continues indefinitely until a word can no longer be
expanded into a string of words. Such a word is called a primitive. These
primitives have a direct relation to executable machine code. For example,
the word double might expand to the string dup +.

Thus far this model describes just the semantics of a macro assembler.
Purrr is an extension of this paradigm because it allows a process of contrac-
tion too. For example the string 1 + might contract to the word increment.

So substitution words both ways: words can be expanded to strings, but
strings can also be contracted to words, or different strings. This model is
simple but powerful. It allows a unified approach to the problems of opti-
mization and metaprogramming. The process of expansion supports bottom
up programming : building larger things out of smaller things. The process
of contraction allows program specialization: using general high level compo-
nents to implement specialized efficient code.

These processes are implemented using macros. A macro is merely a func-
tion that, at run time, will perform the steps of expansion and contraction,
resulting in an incremental compilation process that can be read from left to
right1.

1.2 Interaction

Traditionally, Forth is implemented as an interactive self–hosting system.
Here self–hosting means it can extend itself by translating source code to
some executable representation. Purrr however is cross compiled. The com-
pilation runs on a separate host computer. In order to keep the interesting
interactive properties of a self–hosted Forth system, some effort has been
spent to provide at least the illusion of a self–hosting system: code compila-
tion and upload is possible while a system is running.

1This might not be an optimal implementation since it is greedy, but is a lot easier to

implement than a search based solution.

2

1.3 Rationale

At the moment of writing, Purrr is implemented for the Microchip PIC18
architecture. Purrr is not a standard (ANS) Forth. It is fairly minimal, and
takes from Forth just those elements that are essential to build such a proto
language: procedure and macro words, stacks, global variables and a couple
of control structures. The key differences are the use of 8–bit data words,
separate code and data spaces, and the lack of a self–hosting interpreter and
compiler.

Purrr supports a reasonable high level of programming while still retain-
ing precise control over the underlying machinery. This is necessary in the
intended problem domain: microcontroller programs often contain a mix of
highly specialized low–level code that has to be as efficient as possible, and a
bulk of high–level management code that is complicated but often less time
critical. Forth stacks enable a referentially transparent programming style
resembling functional programming, where a program is factored into a large
collection of small functions called words. Such a style promotes reuse, lay-
ered abstraction and individual testability. In the spirit of Forth, the Purrr
Forth dialect is meant to be extended to a language matching a problem
domain. This approach is called bottom up programming.

Purrr aims to be minimal from an on–target kernel perspective: it is a
native Forth, not requiring a runtime kernel. Effective boot code is only a
couple of bytes to setup the stacks.

Purrr extensively uses macros as a building block. A macro an abbre-
viation that is inlined at the place of occurance. However, macros in Purrr
can recombine. Purrr macros are composable, just like functions, and can
be used to add language features that cannot be expressed using composi-
tion of procedure words alone. Purrr’s macros make up a purely functional
compositional stack language language, for which the substitution principle
holds, and exhibit a rich type system that can be used to perform compile
time computations.

Considerable effort has been spent on keeping the system interactive,
and reasonably introspective, just like a self–hosting Forth. It is possible
to inspect and modify machine code and data state while running, execute
arbitrary code, and compile and upload code on–the–fly. This is an essential
element of a Forth development system and should not be lost due to target
size limitations or the absence of an on–target interpreter.

3

2 The Purrr Language

2.1 How Forth?

A Purrr program consists of a sequence of words. There are two classes of
words. A procedure word refers to a program fragment that is represented
as an individually executable chunk of machine code instructions. A macro
word is a function that represents a compile time action, which eventually
results in machine code. In this manual we abbreviate these names to word
and macro respectively.

macro

: increment \ n -- n+1

1 + ;

forth

: double-increment \ n -- n+2

increment

increment ;

The words macro and forth switch between macro word and procedure word
definitions respectively. In the code above, increment is a macro while
double-increment is a procedure word. The backslash character \ is used
to start line comment.

Following Forth tradition, Purrr’s procedure words have a low–level con-
crete semantics. Purrr is essentially a macro assembler. There is a fairly
direct relationship between a Purrr program text and compiled machine code.

The low–level semantics is complemented with a powerful macro lan-
guage. The programmer can influence the relationship between source code
and native machine code by writing new meta–programming constructs, in
the form of purely functional composable macros. Compared to a traditional
macro assembler, macros do not only expand to asembly code, they also
recombine with previously generated assembly code.

In the example above, the procedure word double-increment corre-
sponds to the code

double-increment:

addlw (1 1 +)

return 0

4

Purrr is special compared to standard, explicitly meta–programmed Forth,
because its metaprogramming through macro composition can be understood
as partial evaluation, an optimization technique that performs program spe-
cialization. In Purrr this idea is stretched to the point that some programs
need to be specialized in order to be executable (compilable) at all.

Compared to standard Forth, Purrr thus uses a simplified implicit metapro-
gramming syntax. Standard Forth uses explicit metaprogramming in the
form of the words [and] which switch between compile and interpret mode.
In Purrr, the programmer does not explicitly indicate which code will run at
compile time.

The example above illustrates the interplay between partial evaluation
and the concrete semantics of Purrr (its relationship to machine code). The
double occurence of the word increment has been partially evaluated to the
machine operation addlw (1 1 +). The code between parenthesis indicates
a function that can be evaluated at compile time, here producing the numeric
value 2. The machine instruction addlw ADDs its Literal argument to the
Working register representing the top of the data stack.

Partial evaluation is an optimization technique often used in the imple-
mentation of functional programming languages. This approach works for
Purrr because it is possible to interprete a subset of the procedural Forth
dialect as a purely functional compositional language. The time at which
function evaluation by composition occurs then becomes a parameter to play
with: this makes it possible to move some of the evaluation to compile time,
as is shown in the example above.

The metaprogramming power lies in this compile time evaluation. Let’s
illustrate this for arithmetic by going back to the example (1 1 +) above.
The integer operation + when it is done at compile time has infinite precision.
The same goes for the other integer arithmetic operations. In order to be
able to represent the result on the target, results of computations need to be
truncated to the data word size, which in case of Purrr18 is 8 bits for data
and 16 bits for code addresses. This technique enables the use of arithmetic
operations that are not available at run–time in a way that is fairly transpar-
ent: it is possible to read source code looking only at the high level meaning
of code, without worrying whether constructs are compilable.

In order to effectively write programs, the programmer does have to worry
about whether a certain construct is compilable. In practice however, this
is quite straightforward. One way of looking at the approach is to view
procedural Purrr as the projection of a clean purely functional, compositional,

5

high–level language, onto a restricted procedural semantics. See the Brood
paper[3] for a formal treatment of this relation.

Summarized, the important property of macros is that they can be com-
posed, and such compositions can be partially evaluated to yield compilable
constructs. The partial evaluation of arithmetic expression is but one exam-
ple of this powerful construct. By relaxing the requirement that all macros
need to be compilable in isolation, one can use macros to construct language
idioms. Idioms are sequences (compositions) of words that yield some compil-
able construct. A non–compilable construct is called ephemeral. An example
of an ephemeral macro is begin. It is not compilable without a balanced
again or until. This approach enables the use of very high level compile–
time operations as long as they eventually lead to constructs representable
in low–level form, or can be reduced to some representable construct, as is
the case for numbers.

In some sense, this projection turns the Purrr language into a leaky ab-
straction: the programmer has to be aware of what functionality is lost in
this projection. Purrr can be seen as an instance of the human compiler
anti–pattern: the programmer deals with the reduction of the high level
Purrr macro semantics to low level compilable constructs, by deciding which
operations are to be implemented as procedure words. In exchange for this
manual labour, one gets direct access to hardware in an environment that
enables a lot of highlevel programming constructs in slightly restricted form.
This idea is almost entirely stolen from PreScheme[2]. Procedural Purrr is
to macro Purrr what PreScheme is to Scheme.

2.2 Tool Chain

In the Purrr tool chain, the meta–programming and code generation occurs
on a system which is different from the one executing the final machine
code. Two computer systems are involved: the host system runs a compiler
program to produce compiled programs from source code while the target
system eventually executes these compiled programs. The main reason for
this distinction is of course the lack target resources to support the tool chain.

The host–target distinction is important from the point of interaction.
Procedure words exist physically on the target chip in the form of machine
code, and can be executed interactively. Macro words exist only in the trans-
lation phase from source code to machine code, and have no direct represen-
tative as an accessible code word, and as such cannot be executed. However,

6

Purrr includes the possibility of executing macros that produce constant val-
ues, as if they were present in compiled form. Similarly, some basic arithmetic
operations are simulated if they are not instantiated as machine code.

2.3 Why Forth?

The most compelling property of Forth is its ease of performing composition:
syntactically, a program is merely a concatenation of the names of sub–
programs, represented as words. If a sequence of words occurs in more than
one place in a program, one can give a name to the sequence, and substitute
the occurrence of the sequence in the source code by the newly defined name.
This technique of program evolution is called (re)factoring, and is essential
for controlled growth.

In short, when a pattern emerges in the source, it is time to increase the
abstraction level and provide some correctness preserving program transfor-
mations to isolate the code patterns and give them a name. In Forth this
usually means to change the order of some words so a sequence can be cut
out and replaced by a single name referencing a procedure or macro2.

Factored procedure words are important because they allow physical (on
chip) code reuse, which limits the necessary target code space. Forth is fa-
mous for doing a lot with a little, exactly because of its high affinity for
factored code. Forth is a compression algorithm. It is probably not a coinci-
dence that conciseness and elegance are correlated.

Factored macro words are important because they allow the construction
of language features that are not expressible as a composition of procedure
words. In Purrr, macro words can be composed just as easily as procedure
words. A category of words necessarily implemented as macros are control
words which change the flow of control to something else than the default se-
quential word execution. Another example is optimization; some macros can
be combined to code that is simpler or has more efficient representation than
the sum of the parts. A third example in Purrr is the use of idioms, which
are sequences of macro words that behave as if they were simply composed
words, but have only a meaning when combined in a certain way, allowing
the expression of constructs that are impossible to express as procedures.

2Being aware of patterns is what programming is all about. It is important to see

patterns in your problem, so you can divise a feasible solution. However, it might be more

important to close the loop and see the patterns in your solution, so you can bring your

understanding of the problem to a higher level.

7

In Purrr, compile time computations have access to a type system that is
substantially richer than the raw machine words used at run time. This type
system is Scheme’s. Notable types are infinitely precise integers and rational
numbers.

3 The Purrr Programming Model

Purrr is a compiled language, and works without a run–time kernel. A Purrr
program is defined in terms of composable macros. Compilation of a Purrr
program is a function which maps a source file and a dictionary to an up-
dated dictionary and a chunk of binary machine code. It is factored into the
following steps:

• Parsing of program text into macros and procedural code.

• Construction of an extended compiler from the base compiler and the
named macros.

• Compilation of the code body to assembly language, using the extended
compiler.

• Construction of dictionary items for the procedural code, and assembly
of binary machine code, statically bound to functionality represented
by the updated dictionary.

The dictionary is used as a representation of an abstract collection of
procedures. These procedures operate on the machine state, and contain a
functional subset operating on a parameter stack. They are implemented
as executable native machine code. Purrr’s programming model is strictly
bottom–up and early bound. Purrr programs are strictly layered, with layers
being compiled separately. Upper layers cannot influence functionality in
lower layers, unless this is explicitly permitted by some late binding mecha-
nism (implemented as an add–on).

Purrr uses partial evaluation as an interface to the metaprogramming
system. This is implemented using greedy macros.

8

4 Two Kinds of Macros

Essentially, there are two kinds of primitive macros. Those that operate on
the compilation stack and those that operate on the macro stack.

4.1 Partial Evaluation

In order to see how partial evaluation works, it is a good idea to look at how
it is implemented. In the transcript below I show the effect of incremental
compilation. Compilation works by pushing data on a compilation stack.
The data on this stack is typed, with the type indicated by a symbolic prefix.

We start with entering a number

>> 1

qw 1

The first line is the compilation input, the remaining lines are the contents
of the compilation stack, which is printed using the command pa. The type
qw indicates a Quoted Word. In order to be compilable, the word needs to
be reducable to a numeric value. We go on by entering another number.

>> 2

qw 1

qw 2

There are now two numbers on the compilation stack. Next we enter an
operation.

>> +

qw (1 2 +)

The result is a quoted word, where the word can be reduced to a number by
evaluating a computation. This is the simplest example of a compile–time
computation.

When a compilation is done, all the data left on the compilation stack
needs to represent a compilable program. In this case, we have a single
quoted number 3, which is certainly compilable. Let’s start over with a clean
compilation stack and type just the operation.

>> +

addwf POSTDEC0, 0, 0

9

This is quite different. What is present on the compilation stack is an assem-
bly program that will perform the computation +. It works by adding the
second word on the run time data stack to the working register, and then
popping off the second word. Popping is done by a post–decrementing read:
read the value pointed to, then decrement the pointer. This is equivalent to
popping the 2 top numbers, adding them and pushing the result.

These two examples illustrate how partial evaluation is implemented: by
inspecting the compilation stack, the macro + knows what code to generate:
either the value can be computed at compile time, and the resulting program
just quotes the resulting number, or the computation has to be postponed
till run time, in which case the appropriate machine instruction is generated.

In the case of the binary operator + there is a third possibility: one of its
operands might be known at compile time. Starting with a clean compilation
stack, providing only one argument yields

>> 1 +

addlw 1

which adds the number 1 to the working register, which implements the top
of the data stack. The resulting code is still an operation, but it is less
general than the one before. The composition 1 + has been evaluated to a
single machine instruction.

4.2 Nested Constructs

Because forth is merely a succession of words, creating nested structures re-
quires some kind of stack. For procedure words nesting, this is the return
stack which is active at run–time. It records where to continue after termi-
nating the current procedure.

For nested language structures created using macros, this stack is called
the macro stack and is accessible at compilation time (macro execution time)
using the macros >m and m>. All words that implement nested structures are
defined in terms of these two words. For example

macro

: begin sym dup >m label ;

: again m> jump ;

The macro begin creates a new symbol, duplicates it and places a copy on
the macro stack before creating an assembler label using that symbol. The

10

word again pops the symbol from the macro stack, and uses it to compile a
jump instruction. As long as there is a balancing again for every begin, the
resulting code is compilable.

Too many occurences of begin lead to non–compilable constructs because
the macro stack is not empty. Too many occurences of again lead to non–
compilable constructs because of macro stack underflow: m> will be evaluated
without values on the stack.

In the definition of begin there is the word sym, which creates a new
symbol. In an of itself sym is not compilable, because the symbol value is not
representable on the target system. However, the words label and jump will
consume symbol values to yield constructs that are compilable: assembler
labels and jump instructions.

It is legal to use >m and m> anywhere in macro code as long as the eventual
use is balanced. A typical use is in metaprogramming constructs which use
a literal value multiple times. For example, a macro that converts a number
to a two byte value can be written as

macro

: lohi \ number -- low high

dup >m

#xFF and

m>

8 >>> ;

This will take a literal value, duplicate it and put one copy on the macro
stack. The low byte literal is computed by applying a bitmask. The high
byte literal is computed by retreiving the value from the macro stack, and
shifting its bits to the right by 8. Note that the shift operator >>> is only
defined at compile time and is thus an ephemeral macro. If the macro lohi

occurs in a code composition after a computation that yields a literal value,
the composition is compilable. The computation runs at compile time so the
intermediate results use infinite precision: there is no 8–bit limit for data
representation.

Direct access to the compilation stack is convenient, but not always nec-
essary. In the example above swap could be used just as well. The following
code is equivalent since all its components can be evaluated at compile time.

macro

: lohi

11

dup #xFF and swap 8 >>> ;

5 Language Features

This section deals with Purrr features that are significantly different from
the classic Forth approach.

5.1 Symbols and Quoting

The word ’ a.k.a. quote will quote as a literal value the word that follows
it. Quoting prevents a symbol from attaining its default behaviour to be
compiled. Compilation means to be expanded to some inlined words if it is a
macro, or to be transferred into a cw (call word) pseudo–machine instruction
if it is not.

Symbols can be used as references to on chip data or procedure code, or
macros. I.e. the words @ and ! interpret literal symbols as variable names,
the word execute interprets a symbol as a procedure word, and the word
compile interprets a symbol as a macro, which it will expand, or procedure
word.

The word label is special in that it allows to name the code that will be
compiled after its invokation. It is the only way to introduce procedure words,
and is called by any word that marks entry points into a code sequence. I.e.
it is used in the word : which defines a procedure entry point: the sequence :
foo is equivalent to ’ foo label. Such a construct is called a parsing word.
To stick to Forth syntax for the most part, Purrr contains some words that
behave similar to ’.

Another word that marks entry points is then. Code will continue there
from a matching if word if the condition is false. The word then expands
to m> label, which means it pops a symbol off the macro stack, and uses it
to compile an entry point. Looking at the definition of the macro if.

: if sym dup >m or-jump ;

The word sym produces a unique symbol to be used as a name for the code
past the if .. then construct. The macro if stores a copy of this symbol on
the macro stack, to be consumed by then later, and it invokes the or-jump

macro, which compiles a conditional jump to the label it gets passed.

12

5.2 Booleans

In Purrr all predicates are macros that can be optimized into efficient machine
language conditional branch and skip instructions. By convention macros
that produce boolean values are postfixed by a question mark ? character.
The macro if can consume these ephemeral boolean values and generate the
appropriate conditional jump instruction. Take a (simplified) example from
serial.f the serial port driver

macro

: rx-ready? \ -- ?

PIR RCIF high? ;

forth

: receive \ -- byte

begin rx-ready? until

RCREG @ ;

The macro rx-ready? generates an ephemeral boolean derived from the bit
at position RCIF (ReCeive Interrupt Flag) in the special function register
PIR (Peripheral Interrupt Register). This boolean is consumed by the until
macro word, which is eventually implemented in terms of the if macro word
(which itself is implemented in terms of the primitive or-jump word). This
code illustrates a pattern often used in the Purrr code: abstract each con-
dition in a macro, naming it appropriately to make the code that uses the
condition more transparent.

5.3 Tail Call Optimization

In Purrr a procedure word followed by the ; or exit instruction is translated
into a jump. This allows for the use of recursion to write loops, without
overflowing the return stack. The following code does the same as receive in
the previous example by calling itself recursively until the condition becomes
true. This example has multiple exit points (see below).

: receive

rx-ready?

not if receive ; then

RCREG @ ;

13

5.4 Predicates for Inspection

Purrr contains a collection of predicates that will just load a flag on the
stack, instead of consuming a couple of arguments. This contrasts with
some standard Forth predicates. These predicates are named by appending
a question mark ? to the standard Forth name. For example:

= \ a b -- ?

=? \ a b -- a b ?

5.5 Indirect memory access

The PIC18 architecture has separate instruction and data memory spaces.
Purr18 uses two pointer registers to access these memories: the a register
accesses volatile RAM, and the f register accesses non-volatile Flash memory.
Indirect addressing using the @ and ! words is only supported for variables,
which are literal addresses. However, it is possible to implement single–byte
indirect addressing using the pointer registers.

To read from RAM memory, the words @a, @a+, @+a and @a- can be used
to access the 4 addressing modes on the PIC18: indirect, postincrement,
preincrement and postdecrement. The a register can be accessed through
the low and high bytes al and ah. An abbreviation for storing both high
and low words is provided:

: a!! \ lo hi -- | store 2 bytes in the a register

ah ! al ! ;

Similarly, to read Flash memory, the words @f, @f+, @+f and @f- can be
used. The f register can be accessed similarly through the byte parts fl and
fh.

14

5.6 Named Macro Arguments

For macros only, it is possible to give names to literal arguments. For example
the word 2@ which fetches 2 bytes from consecutive memory locations can be
implemented as

macro

: 2@ var |

var @

var 1 + @ ;

forth

The word | is unlike any other word in that it is a parser extension that
separates a named argument list from a macro body in which these names
might occur. The code above is equivalent to

macro

: 2@ \ var --

dup >m @

m> 1 + @ ;

forth

Note that the occurence of var here is just as part of a comment.

6 Control Flow

This sections deals with ways to escape from sequential code execution. The
unifying idea is that you can use two stacks to roll your own control abstrac-
tions. The return stack is used to record nesting state at run time, and for
computed jumps (push an address on the return stack, and return or ; or
exit to it). The macro stack is used for compile time computation of control
flow.

6.1 Standard Control Flow Words

Purrr supports the standard control words which use the macro stack. The
effect on this stack is indicated as here as m: < in > -- < out >. Similarly
using x: for the auxiliary stack.

15

if \ ? -- m: -- label

else \ -- m: l0 -- l1

then \ -- m: label --

for \ count -- m: -- label x: -- loopcount

next \ -- m: label -- x: loopcount --

begin \ -- m: -- label

again \ -- m: label --

until \ ? -- m: label --

while \ ? -- m: l0 -- l0 l1

repeat \ -- m: l0 l1 --

For for .. next this is a simplification3. Refer to any Forth manual for the
meaning of these words.

6.2 Multiple Entry and Exit Points

Since Purrr procedure words are just assembler labels representing machine
code addresses, and straight line Purrr code is translated to straight line
machine code, there is no reason for a word not to have multiple entry points.
In fact, this can be quite convenient. This code

: double-increment

1 +

: increment

1 + ;

defines two words. The second one increments the top of stack value by one,
while the first one increments the top of stack value by two. The code in
the first definition just falls trough to the last definition as if the sequence
“: increment” wasn’t there. Similarly, a procedure word can have multiple
exit points. In the code

: safe-turn-on

problem? if ; then turn-on ;

3What is indicated to be a label is not a symbol bot an anonymous macro representing

a backtracking operation used for optimizing loops. It behaves as if it were a label though,

it’s just impossible to balance them with the other control words

16

the word turn-on is executed if the problem? condition is false. If the
condition is true however, the word exists trough the ; word inbetween if

and then.

6.3 Vectors

A vector is a variable containing a word address. The interface consists of
two words

invoke \ var -- | execute the code stored in var

-> \ var -- | set var to point to code

The word invoke is implemented as 2@ execute/b, which fetches 2 bytes
from a double variable and passes them to the execute/b word which ex-
ecutes the code pointed to using byte addressing. The word -> stores the
address of the code following it in the variable, and then exits the word in
which it occurs. So it will not execute the code after the arrow, jus change
the value of the variable. I.e. the code

2variable current-op

: will-inc current-op -> 1 + ;

: will-dec current-op -> 1 - ;

defines a word will-inc that when executed changes the subsequent be-
haviour of current-op invoke to 1 +. Similarly, the word will-dec changes
the subsequent behaviour to 1 -. By itself, the words will-inc and will-dec

don’t do anything except for setting the value of the variable current-op:
the word -> is an exit point for these words. We call words containing ->

arrow words.
As the name in the example indicates, vectors can be used to set current

behaviour, folling the Forth mantra “Don’t set a flag, set behaviour.”

6.4 State Machines

The route word is a different mechanism for implementing dynamic be-
haviour. It can be used to construct byte codes using dispatch tables. While
vectors are generic because they can point to arbitrary code, byte codes are
more specific: they map state (a number) to behaviour by using explicit
interpretation.

17

Vectors work well if there is a small number of invokation points and a
large number of arrow words. When the number of alternatives is fixed, i.e.
in the implementation of finite state machines, byte codes are easier to use.
The use of route is best illustrated with an example of how it would appear
in code:

: abcd \ bytecode --

route

aaa ; bbb ; ccc ; ddd ;

In this example, 0 abcd corresponds to aaa, 1 abcd corresponds to bbb,
etc. . . This works because for a procedure aaa, the sequence aaa ; consists
of a single machine instruction, and the word route takes its argument and
uses it to jump past that number of machine instructions. To keep things
simple it is best to stick to this kind of behaviour: using procedure words
separated by ; to create a dispatch table.

However, every slot in the jump table can be filled with anything that
produces a single instruction. You can use macros like reset which will
compile to the machine RESET instruction, or you can use just ; by itself,
which compiles RETURN and effectively does nothing. It is also possible
to leave out the ; to just jump into a sequence of words skipping the firsts
couple.

6.5 Cooperative Multitasking

The heavier approach to sequencing is to use tasks. State machines can be
the right solution for some problems that do not require recursion. When
procedure nesting is required but a piece of code does have some control state
in isolation of other code, tasks are a good solution. A task has a separate
execution thread.

Each task’s state consists of a set of stacks, in case of Purrr, a return
stack, a data stack and an auxiliary stack. Usually it is a good idea to
also save a separate copy of the a and f registers per tasks. Purrr contains
primitives to implement your own multitasker in the file pic18/task.f. It
implements the words suspend, resume and swaptask.

suspend \ -- task | freeze current task context

resume \ task -- | make task context current

swaptask \ task var -- | swap task with the task in var

18

Usually the word that performs task switching is called yield. In the
common case where there are only two separate tasks, this word simply
switches between the two tasks, using a single variable to point to the repre-
sentation of the other task:

variable other

: yield

suspend

other swaptask

resume ;

The difficulty in using tasks on a low level is how to create them. In Purrr
this requires manually allocating resources for the tasks’s stacks. For the
2–task case the other task can be booted by the word

: start-other-task

suspend other ! \ suspend current task

#x10 rp ! \ use half of the hardware return stack

#x50 xp ! \ for rp, and use a region of RAM for

#x60 dp ! \ the byte stacks dp, xp

task-init-code ; \ start the task’s code body

This discards anything stored in the other variable, and performs manual
context switching by changing the 3 stack pointers to a free memory location,
before running the task’s initialization code.

A more complicated scheduler can be implemented by replacing the code
betwee suspend and resume in the yield code above. For example, code
from pic18/buffer.f could be used to create a round-robin scheduler which
executes a couple of tasks in a circular fashon4.

6.6 Procedures or Macros?

At several points during the development of reusable library code I ran into
the question: am I going to use macros or procedure words. To answer the
question generally, it should be translated to: should this code be fast or
small.

4For PIC18, the hardware return stack is a fairly limited resource. If a lot of tasks are

required, explicit copying of the stack might be necessary. An alternative is to write a VM

on top of Purrr which doesn’t use the hardware stack. There is a draft version of a 16–bit

direct threaded interpreter available.

19

To understand the main reason why this question pops up it is necessary
to look at the PIC architecture, where indirect addressing is quite expensive.
It is obvious that the PIC has a bias toward static objects: it has quite some
provisions to deal with memory addresses that are known at compile time, so
they can be inlined in the code. However, dynamic access which is necessary
for object abstractions requires the use of the FSR registers. Of these there
are 3, and Purrr uses them as data stack pointer, auxiliary stack pointer and
the a register. Whenever an indirect access occurs, the a register needs to
be saved, set and restored5. As a consequence, dynamic objects are about
an order of magnitute more expensive than static ones.

This bias toward static code eventually reflects in the design of the Purrr18
library code: it has a lot of provisions for static objects in the form of macros,
especially at points where speed might be an issue, for example the buffer
code in pic18/buffer.f. These are somewhat harder to use because they
often need to be instantiated explicitly if code size is an issue.

7 Effective 8–bit Programming

This part is specific to the 8–bit Purrr variants, of which there is only one
at the moment: Purrr18. Nothing limits Purrr to be implemented on larger
word sizes. However, Purrr is organized in a way to make 8–bit data cells
practical, while retaining a larger (machine specific) return stack size.

The ANS Standard explicitly prohibits an 8–bit cell size, setting the min-
imum size at 16 bits. It requires data stack elements, return stack elements,
addresses, execution tokens, flags, and integers to be one cell wide. While
Purrr is non–standard for a lot of different reasons, this requirement really
kills it. However, it is my opinion that an 8–bit Forth has a reason of exis-
tence, despite the limitations of different code and data cell sizes.

Purrr contains some 16–bit library routines, but using them can be cum-
bersome. The Brood distribution contains a direct threaded 16–bit virtual
machine written on top of Purrr which does enable a more standard Forth
approach. It comes with its own interaction system, similar to Purrr’s. This
language is substantially different from Purrr and is more true to standard
Forth practice. It is however still incomplete.

5To get rid of save and restore it is possible to assume throughout the program that

the register can get clobbered. However, this is a global constraint which makes it harder

to enforce.

20

In Purrr for the PIC18 the 21 bit wide hardware return stack is used.
Purrr only uses the low 16 bits, leading to a representation of a procedure
word as a two cell value. Because of its larger size and fixed depth (only 31
words), a separate byte stack called the x stack or auxilary stack is used. I.e.
this stack is used to store the loop counter in for . . . next loops. It can be
used as an alternative to the return stack for temporary value storage.

Working with 8 bit words effectively is all all about sufficiently factored
abstract representations, and hierarchical management of large quantities of
space and time. The problem points can be identified as limited precision
for mathematical operations, limited practical data buffer sizes, limited loop
size, and difficulty of representing code as data.

For math, you’re basically out of luck and need to resort to tricks. Purrr
has some 16–bit math routines, but math–intensive applications usually work
better on larger word size (real or virtual) machines, and as such are not
considered part of the application domain of straight Purrr code. Building a
VM on top of Purrr is the way to go here.

On the other hand, don’t forget that logic is your friend! A lot of problems
can be solved by creatively using and, or, xor, -, + and the shift and rotate
operations together with the carry flag. Purrr exposes the these low level
machine details to give you the means to create your own abstractions on
top of them, using either procedure or macro words. Note that hexadecimal
numbers are specified like #xF0, and decimal numbers like #x11110000. Purrr
does not use a base word: all numbers are decimal, unless they are indicated
as hexadecimal or binary. Also note that the PIC18 contains a hardware
multiplier for 8×8 → 16 unsigned multiplication, which can be used to build
your own multiplication abstraction. Purrr18 contains some code for a 24
unsigned MAC operation to implement digital filters.

The problems caused by large data buffer sizes can usually be avoided by
proper abstraction. In addition the intended target chips usually have small
memory sizes, so large buffers are rare. When they do occur, it is usually
easier to perform buffer management on a byte and a block level: adding
hierarchy to a solution can often not only solve a word size problem, but also
bring up solutions that are easier to write down. The same argument goes
for limited loop sizes. If you need a for . . . next loop that executes more
than 256 times, just nest two of them. Even better: put the inner loop in a
separate word and try to see if the code now tells you why you’re better off
using this hierarchical solution in the first place.

For the problem of effectively representing code as data, byte codes bring

21

a simple solution. A byte code can represent up to 256 different words.
The easiest way to do this is to use the word route to construct a jump
table. Here is a code fragment from the boot interpreter taken from the
pic18/interpreter.f file. It interprets numbers (tokens) ranging from 0 to
15 by mapping them to code.

: interpret \ token --

#x0F and route

; receive ; transmit ; jsr ;

lda ; ldf ; ack ; reset

n@a+ ; n@f+ ; n!a+ ; n!f+ ;

chkblk ; preply ; ferase ; fprog ;

The route here is used to perform something akin to procedure table
lookup. The word takes a single argument n and jumps to the n–th machine
word following itself. The table above contains 16 machine word entries. To
make sure jumps remain inside the table, before route the top 4 bits of the
token are chopped off using and. All words in the table, except the empty one
and reset, revert to procedure words, for which which the idiom receive ;

compiles to a single machine word jump instruction.
The first slot is empty: a ; word by itself compiles to the RETURN

instruction, which in a route table acts as a no–op. The reset word is a
macro that compiles to the RESET instruction, also taking a single machine
word slot.

8 Live Interaction

Next to macro and procedure words, there is a class of words only defined
for live interaction. Two of these interactive commands prints out documen-
tation for words.

see <WORD>

msee <MACRO>

it is possible to inspect the target or macro code associated to a certain word.
A procedure word is always compiled machine code: all information about
the source code has been lost.

22

> see receive

receive:

btfss 158, 5, 0

(106) bra receive

(108) btfss 171, 1, 0

(110) bra 118

(112) bcf 171, 4, 0

(114) bsf 171, 4, 0

(116) bra receive

(118) movwf 236, 0

(120) movf 174, 0, 0

(122) btfss 171, 2, 0

(124) bra 130

(126) movf 237, 0, 0

(128) bra receive

(130) return 0

A macro word is either a composition of other macros,

> msee begin

macro:

(sym dup >m label)

a primitive assembler pattern matching macro,

> msee +

asm-match:

((((qw a) (qw b) +) ((qw (wrap: a b ’+))))

(((addlw a) (qw b) +) ((addlw (wrap: a b ’+))))

(((qw a) +) ((addlw a)))

(((save) (movf a 0 0) +) ((addwf a 0 0)))

((+) ((addwf ’POSTDEC0 0 0))))

or one of the few CAT primitives with state: syntax.

> msee m-dup

macro-prim:

(dup)

23

References

[1] Purrr, 2007.

[2] Kelsey, R. Pre-scheme: A scheme dialect for systems programming.

[3] Schouten, T. Brood, 2007.

24

