
Brood

TOM SCHOUTEN

October 29, 2007

Abstract

Brood is a playing ground for exploring the space between the

Scheme programming language, functional stack languages, and low

level Forth. Brood is a programmable compiler. This paper serves the

purpose of documenting the design of the system, and to make what

I’m doing a bit more formal.

1 Introduction

1.1 Goals

The goal of the project is to create a programming tool chain for deeply
embedded programming, structured as a lowlevel language based on Forth
and a high–level meta programming system based on Scheme and functional
stack languages. The following components are working:

• Low level. The base language is little more than an unsafe Forth stack
machine model that is easily mapped to a concrete 8–bit machine.

• Simple macro system. The base language is designed with optimization
and metaprogramming in mind, and has a first metaprogramming layer
in the form of compositional macros.

• Interactivity. The system should be completely interactive and support
incremental development from the low to the high level.

On top of this I plan to build a CONS based list processing machine, which
can either host a lisp, or a dynamic concatenative language. I’m looking at
both linear (tree) and nonlinear (graph) memory structures.

1



1.2 History

Originally, the Badnop Forth compiler was written in Forth. Because of the
size of the target system, I was as good as forced to use cross compilation and
tethered development. After having tasted Scheme and the Joy of functional
programming for a while, I grew frustrated with the limitations of Forth
employed as a meta–language, and wanted something more high–level.

The quest eventually lead to CAT, a set of Scheme macros that imple-
ments a compositional, strict, mostly functional language within Scheme.
CAT is a layer that matches the impedance between Scheme and compo-
sitional / concatenative programming. CAT is used as the implementation
language of the code generators (macros) that implement the Purrr18 Forth
dialect.

Note that most of the ideas here are based largely on texts written by
Manfred von Thun, about his programming language Joy[3], on the ideas be-
hind the PLT Scheme macro/module system which is made by Matthew Flatt
[2], and on a lot of inspiring texts about functional programming, Haskell,
type theory, and category theory. I am seeing a lot of vague patterns that I
cannot give a name yet, which indicates I need to read and think more about
this matter. I have a bottom up mind, and can learn only by example. This
system gives me the motivation to try to understand more theory. If you
find blatant errors, please correct.

2 Forth Language Semantics

This section describes the system from two viewpoints. The first will be the
semantics of the Purrr family of Forth languages, more specificly Purrr18 for
the Microchip PIC18 architecture. The second will relate this semantics to
syntactic operations on program text.

I will translate the problem of compiling Forth into the problem of re–
arranging program text, which interpreted as a representation of a function

composition, by applying partial evaluation. In order to get to that represen-
tation, Forth code needs to be processed because some Forth constructs do
not fit in this view. In the following I will talk about two problem cases: quot-

ing and definitions, after giving some definitions to pin down the meaning of
a compositional language.

In the long run I am more interested in the (intermediate) compositional

2



low level language that is emerging from this approach. This language should
eventually lead to a concatenative language tower, a series of bootstraps from
low to high level. I see Forth as a very convenient syntax layer on top of this
intermediate language, which helps guide its development.

2.1 Compositional language

Define a compositional language as a set of unary functions W . To correspond
better to source code, we employ a reverse Polish notation for composition
of the functions f, g ∈ W as

[fg] = g ◦ f,

where ◦ is the conventional notation for function composition. In the fol-
lowing we will use a verbatim font to indicate we’re using program source
text syntax, where function names are delimited by spaces. For example
[foo bar] is a composition of the functions foo and bar.

Using our square bracket notation, the associativity of function composi-
tion can be expressed without parenthesis, as

[[ab]c] = [a[bc]] = [abc].

The application of a composition [fg] to a value x is the same as applying
g to the result of the application of f to x, or

[fg](x) = g(f(x)).

This rule is important for the program transformations we are about to
discuss. The execution of a program is represented by function application.
The expression on the right denotes the separate execution of the represen-
tations of f and g. The expression on the left denotes a program that is first
transformed to a composite program [fg] before it is applied to the data.
The factors f and g are not represented separately.

When it is possible to represent composite programs in a more efficient
way than representing them separately, this composition is called partial

evaluation, and acts as an optimization. This is always possible, but not
always desirable. It might very well be that the cost of storing or executing
the composition is more than the sum of the costs of the factors.

What we will elaborate on later are idioms. These are necessary partial
evaluations of programs that cannot be represented as individual functions,

3



because they employ notions that are meaningless in the context of the pro-
gram, but meaningful during compilation. The factors comprising idioms act
as meta–programming tools. Most of the time they operate on types that
cannot be instantiated at run–time, such as symbols.

Please note that partial evaluation is an operation on syntax, or on the
representation of a program. This operation preserves semantics. There is
another interesting syntactic property we might use for optimization and
metaprogramming, which is commutativity of functions. I’ll come back to
this later.

Note that a continuation in a compositional language is extremely simple.
It is the function composition following a certain function. For example, the
continuation of b in [abcd] is [cd]. Note that in an applicative interpreter that
allows nested functions, a continuation is usually represented as a stack of
partial continuations.

2.2 A real machine

Modeling an imperative machine language as a compositional language works
well, as long as we take the entire machine state as the domain of the func-
tions. The resulting language might not be so useful as a programming
language, for example it might lack any kind of late value binding, but the
functional representation is very useful for metaprogramming by partial eval-
uation.

There is one difficulty though, which is the representation of branching.
We’ll just assume that the compositional program [abc], with b a branch
instruction, is just a normal program. However, when evaluated, the subpro-
gram b doesn’t terminate. Since this depends only on the semantics, it can
be completely ignored by the compiler, which operates on syntax only.

2.3 Forth is not compositional

Forth in its original form does not fit the compositional framework mentioned
above. Take the Purrr18 program fragment

fsymbol hello

which contains two words. This fragment generates code that returns a
pointer to the byte string hello, which is stored as a flash memory byte
string constant.

4



The second word can clearly not be a function. The reason is that
fsymbol changes the meaning of hello. What we need is a way to express
the same effect, only by using individual functions. To this end we introduce
a quoting syntax. Replace the previous program by

’hello *fsymbol

where both words are functions. The first one denotes the function that
quotes a data object; a function that produces the symbol hello on the top
of the stack. The second is a function that consumes this symbol, converting
it to a pointer to a byte string stored in flash memory. The composition of
these 2 functions has the same semantics as the original Forth fragment.

Does this mean the target run time type system contains symbols? We
can do without a representation of symbols in the target system if all oc-
curances of such types can be eliminated at compile time. The following
sections illustrate how we can do this by employing partial evaluation of the
program text, and an embedding space with a larger type system than that
of the run time.

2.4 Reflection and Definitions

Following up on the previous note introducing quoting to get rid of a non–
composable Forth constructs, there is a special class of words that take sym-
bols which cause a different problem: the definition of new words. In Forth,
these are words like variable, constant, and : (colon). In Purrr18, this is
currently handled by implementing words like *variable, *constant, and
*: which create new names in the dictionary at compile time.

However, this is a form of reflection which creates difficulties for source
code processing and modularization. The language before and after the def-
inition of a new symbol is different because of the presence of a new (or
redefined) word. This can change the interpretation of the following code
substantially.

Forth in its original form is highly reflective, which is of course a source
of great power, and the primary reason why it can be so small and still do so
much. Part of my effort is to unroll this reflectiveness, in order to simplify
metaprogramming. To make a language easier to process as data, it’s best
to remove it’s own ability to reflect, to process itself as data. As shown in
[2] one does not have to loose too much reflectivity to make modularization
easier, one merely needs to unroll the reflective loop into a directed acyclic

5



language graph. This exposes a static code structure, instead of a dynamic

reflective loop.
Currently, an entire source file is a program, delimited by exit points ;

and named entry points, which are : followed by a function name. This might
change to a more standard source semantics where the source is a collection
of macro and function definitions. A macro definition in Forth code is just
an inlined function. Macros can contain non–compilable words, but function
definitions can contain them only grouped into idioms.

2.5 Types and Meta Types

In our application, the target run time type system is very simple. If we
need to make it explicit, for the PIC18 it is an 8 x N array of bits. Call T
the target type, the collection of possible machine states. Note that we avoid
first class functions.

All primitive machine instructions w ∈ W
p
T

are endomaps of this set

W
p
T

: T → T .

Composing these primitive functions gives a larger set of words

WT = {[ab . . .] | a, b, . . . ∈ W
p
T
}.

In order to represent the meta language we hinted at in the previous
section, we need a larger type system. Let’s extend T with M, the meta

type. M could contain values like symbols, numbers, and even programs
from WT . Endomaps of this extended space are collected in

WM : T ×M → T ×M.

Target words can be embedded in this space of functions, by means of an
embedding map

e : WT → WM,

which maps real programs to meta–programs. Let’s say a program pm ∈ WM

is compilable if there exists an element pt ∈ WT such that pm = e(pt). Note
that compilability is a semantic property.

6



2.6 Syntax

In order to perform compilation, it is necessary to work on a syntactic rep-
resentation of programs. Define XT and XM as the set of program strings,
respectively associated to the sets of functions WT and WM.

Each st ∈ XT can be associated to a wt ∈ WT , and each sm ∈ XM can
be associated to a wm ∈ WM. These maps

iT : XT → WT and iM : XM → WM

are called interpretation maps and relate a program text to its semantics in
the appropriate space of functions. These maps are onto and thus define
equivalence relations, creating equivalence classes of program strings that
map to the same semantics.

The existence of the map i allows us to define the embedding maps for
the syntactic domain as any

es : XT → XM,

for which iM ◦ es = e ◦ iT , illustrated by the diagram

XT

iT
- WT

XM

es

? iM
- WM

e

?

Note that es is not unique, and one typically chooses this to be the rpn

assembler.
Let’s illustrate this embedding with an example for Purrr18. Program

texts in XT are strings of machine instructions, where each instruction is
represented by an expression in parenthesis. Each such expression has a
meaning in WT The meaning is attributed by the map iT . The equality

es([(movlw 123)]) = [123 movlw]

associates the syntactic representation of the machine instruction that loads
the number 123 in the working register with the rpn assembler code for
Purrr18.

7



We say a program text is compilable if its semantics are compilable. This
property is transferred from the semantic to the syntactic domain by the
interpretation map iM. This gives an equivalence class {Xnc

M, Xc
M} of un-

compilable and compilable program texts.
The act of compilation is defined for compilable programs as a map

c : Xc

M → XT .

The act of optimization is defined as the identification of a particular st ∈ XT

from the equivalent representations of wt, which is optimal according to some
measure on XT .

2.7 Idioms

Metaprogramming becomes interesting when we can use non–compilable
functions f, g, . . . ∈ WM that lead to a compilable composition [fg . . .].

This way some specific target behaviour can be factored into a composi-
tion of words that are not representable on the target side, but nevertheless
serve as an abstraction mechanism. We can define f, g, . . . independently in
source code, but use them together so they can be represented on the target
after composing the functions. We call these compositions idioms.

An example to make this a bit more concrete. Suppose M contains a
subset of symbols. That way some word f could produce a symbol, and
some word g could consume it consume it, transforming it into a target
program. Due to the production/consumption of this symbol, the words
f, g can not be compilable, but the composition [fg] can be. So during the
optimization phase we could replace the words f, g with a compilable word
h = [fg], partially evaluating the composition to a single function. One could
call these words “quarks”.

For example. thake the code [’foo @]. Neither of both words are com-
pilable, but they compose into a word that is, namely one that generates the
instruction to fetch a value from some numerically addressed data location,
say 123, and put it on the stack. For the Purrr18 language this is the target
machine program [(save) (movf 123)]. Note that the machine instruc-
tion (movf 123) counts as a single word: machine instructions are denoted
by using original syntax, delimited by parentheses, while composition is still
denoted by square brackets.

Classic immediate Forth words fall into this class also. An example are the
words for and next. Neither of them is compilable, but a composition that

8



starts with for and ends with next, and constists of a compilable composition
in the middle, is itself compilable.

2.8 Optimizations

If there is a subcomposition that can be represented more efficiently as a
specialized function, it is always possible to take out the original composition
and replace it with this function. Note that it is alwasy possible to do this,
but might only be desirable for a small subset of compositions in a program.

Usually this works well when the composition involves static data, which
is data known at compile time. For example in the program [foo 1 + bar],
the composition [1 +] could be implemented as a single operation increment,
leading to the resulting code [foo increment bar].

3 Implementation

The implementation of the partial evaluation scheme mentioned in the previ-
ous section is done using macros, which operate on syntactic representation
of the semantics explained above.

Define C as the set of compilation states. In practice, C contains stacks of
(scheme) values. A macro is then defined as c ∈ WC, which contains functions
on C × X∗

T .
The set X∗

T can be seen as an intermediate representation which is slightly
bigger than XT , in that it can represent some elements from XM, including
symbols and pseudo operations, but is not large enough to represent XM

entirely.
A macro creates program strings. The compiler of a program string

s ∈ XM is a composition of macros directly derived from the program source
text by associating each word in the program source to a corresponding
macro that will generate a target program text fragment and/or change the
compilation state.

The target program text is obtained by applying the compiler to an empty
compilation state and an empty program string.

• REPRESENT. Forth is translated to a compositional representation in
XM. This representation is given a postponed semantics, p : XM →

9



WC, which associates a compiler to the program text. This represen-
tation is obtained by relating each syntactic element s in the program
text to a macro m ∈ WC which will compile its semantics.

• COMPILE. The resulting compiler is evaluated to produce a program
text. Each macro macro is applied to the propagated stated from left
to right. Each macro has some intelligence about how to combine the
accumulated target program text ∈ X∗

T with compilation state data
∈ C generated during its compilation, into new code and change of
compilation state. Each macro eagerly employs partial evaluation of
the generated code, using mostly local information.

• ASSEMBLE. When the program text has a correct semantics of a com-
pilable program, invocation of the compiler results in a program text
in X∗

T that can be represented in XT without loss of information, by
replacing remaining symbolic names by numbers.

The REPRESENT stage actually contains a number two separate stream
processors: the first one is bound to the filesystem, and implements the
load word, which inlines forth files, and the load-ss which inlines Scheme
files. The second stage (independent of the filesystem) converts all non–
compositional Forth constructs to compositional ones, and separates macro
definitions from macro instantiations. This is called the parser stage.

4 Thoughts on Stack Languages

In the previous section we talked about how compilation, optimization and
metaprogramming can be implemented as syntactic operations based on the
associativity property of function composition.

In and of itself a compositional language can hardly be called a progam-
ming language. It is more of a machine model applicable to many languages
that can be modeled as a function composition, i.e. most real machine lan-
guages without branching.

In this section we discuss some of the properties of two classes of spe-
cialized compositional languages: the compositional stack languages (CSLs),
and the compositional tuple languages (CTLs).

10



4.1 CTL → pure CSL

A compositional tuple language (CTL) is a category F where the objects
are sets of tuples Ti, and the arrows are functions fij : Ti → Tj bringing an
i–tuple to a j–tuple. A compositional stack language (CSL) is a category
W with a single object S, a set of stacks, where the arrows are functions
(words) w : S → S. This makes a CSL a monoid. We denote a stack with
angle brackets 〈. . . , a2, a1〉, where a1 is the top element.

We call a CSL pure if it has a parent CTL which is taken to the CSL by
means of the functor snarf

σ : F → W.

This functor maps each Ti to S by associating to each i–tuple ti = (ai, . . . , a1)
a stack 〈ai, . . . , a1〉 = σ(ti), and to each morphism fij a morphism w : S → S

which can be composed of the operations

• Split S → S × Ti, mapping a stack s ∈ S into a pair of a stack and a
tuple (sb, ti), where ti ∈ Ti is the i–tuple containing the top i elements
of s, and sb the bottom, which contains the rest of the stack.

• Evaluate S × Ti → S × Tj , which maps (sb, tj) = (sb, fij(ti)),

• Join S × Tj → S, which maps the tuple (sb, tj) back into a stack by
pushing all elements of the j–tuple tj onto sb.

This is a functor because it preserves the identity morphisms, and composi-
tion of morphisms

• σ(1Ti
) = 1S

• σ(fjk ◦ fij) = σ(fjk) ◦ σ(fij)

If a CSL is pure all operations in W are local to the top of the stack. For
each w : S → S there are numbers i, j such that

w(〈. . . , ai+1, ai, . . . , a1〉) = 〈. . . , ai+1, bj, . . . , b1〉,

which allows us to associate it to an fij : Ti → Tj . Note that this cannot be
expressed as a functor W → F because we cannot map the set of stacks S to
the sets of i–tuples Ti. The conversion from CTL to CSL looses information
about the arity of the functions.

In Brood, this functor is seen in action at the point where Kat is derived
from Scheme, and where (a subset of) Purrr18 is derived from a functional
language implementing 8 bit arithmetic.

11



4.2 Why stacks?

In essence, the data stack is part of an explicit representation of a continua-

tion of the application of a function tj = fij(ti) to a tuple ti ∈ Ti, as part of
a larger computation c ∈ Tp → Tq.

The continuation is a function k ∈ Tj → Tq which is represented in S → S

by a pair of functions d, r. The function d is a multivalued constant, mapping
the empty stack to the part of the stack that’s left invariant by the function
fij under consideration. The function r is usually represented as a list (stack)
of function compositions.

The function k takes a tuple from Tj, which is the result of applying fij

to an element of Ti. The codomain of k is the same as the codomain of the
computation c of which k is part.

In the representation set S → S, it is easy to see d as a representation
of the past of a computation and r as the representation of the future, by
expression a computation as

c = [dtifijr].

Here ti produces the i constant data items used by fij which is here directly
represented as a stack word. We can call tj = [tifij ], the evaluation of fij

independent of its continuation represented by the past d and the future r.
It is clear that a CSL language can be used to implement a CTL language.

Now, why would we be using this low–level representation to write programs?
The main reason is to be found in steering words. In a CSL we can factor
a program into more general terms than a CTL. For example, the operation
dup needs to be defined only once, and can be applied regardless of stack
size. In a CTL we would need a dup for each Ti with i > 0.

So in short, it’s more convenient to write programs in a CSL, but for
thinking about the language, it can be more convenient to switch to the
parent CTL. Both give us point free notation.

What I am still looking for, is a way to associate arrows as they are used
in Haskell, to stack languages.

4.3 Closures

Stack languages make it easier to distinguish between functions that are
closures created at run–time, and those that depend only on immediately
supplied arguments.

12



Because the absence of variable names, dynamic closures need to be cre-
ated using an explicit dynamic curry operation c. The advantage of this is
that a CSL language which supports first class functions but no first class
closures, for example because it lacks dynamic memory management, can be
easily extended by adding the combinator c.

To see this, let’s compare the lambda terms M = λx.x + 1 and N =
λaλx.x + a. The former can be derived from the latter as M = (N1).

To represent M as a stack word ∈ S → S, we could write it as the
composition [1+], where 1 and + are the snarfed constant function from T0 →
T1 and the binary operator from T2 → T1 respectively. This composition is
static, meaning it can be completed at compile time.

To represent N we need some kind of combinator trick. For example
[(+)c], where (+) denotes the function snarfed from T0 → T1 that pushes
the function + to the top of the stack, and c denotes the curry operation,
which combines a value with a composition, by turning the value into a
function that generates the value, and composing that function with +. This
operation is dynamic in that it creates a function value at run–time.

4.4 Linear memory management

Stack languages make it feasible to eliminate the need for dynamic garbage
collection, by using linear memory management. This is a consequence of the
presence of explicit dup and drop operators for accessing values. Compare
this to β–reduction for lambda expressions, which doesn’t account for the
number of times a bound variable is referenced.

With linear memory management we mean that the entire data collection
is a (binary) tree. Each cons cell in this tree is referenced only once, and
all operations on the tree preserve its topology. This can be implemented
efficiently using hash consing. See [1].

The key observation in a meta–programming setting is that linear data
structures are allowed to refer to non–linear ones, as long as the non–linear
collector can traverse the linear data tree to identify reachable data. Non–
linear structures are not allowed to refer to linear structures directly.

Compiled code could be part of the non–linear part of the system, man-
aged by meta–collection. Closures and other lists can be dynamic, but linear.

An advantage of this is that a linear core system can run without the need
for memory management by garbage collection, making it suitable for hard
real–time tasks without requiring a real–time garbage collector. This pattern

13



of splitting a program into a static kernel and a dynamic system interacting
with it in a controlled way, i.e. using message passing, can be found in quite
a lot of systems. However, compositional languages make this idea practical
without giving up too much expressive power.

This is one of the core ideas behind brood as a metaprogramming system,
which is related to Packet Forth. At the time of this writing, PF is still a
separate project. Brood does contain poke, an attempt to build a linear
machine based on restructuring of binary trees.

4.5 Modules

Names are an important programming tool. Compositional stack languages
in their basic form use a flat global name space. This can get messy. For
practical programming, some form of name space control is necessary. I
suggest something like MzScheme’s module system.

5 CAT

CAT, the language used to implement the compositional macros discussed
above is a compositional language implemented as MzScheme syntax exten-
sions. To reduce confusion with the term macro used in this paper, I will
refer to a scheme macro as an extension.

5.1 Base CAT

Base CAT is not much more than a mapping from scheme to a compositional
syntax. In scheme, this is implemented by the base: extension. This creates
functions s → s, where s is the set of stacks of values. A stack is represented
by a CDR–linked list, used as the argument list for scheme procedures. Here
are some examples related to their defining scheme expression:

(base:) ≡ (lambda s s)

(base: 123) ≡ (lambda s (cons 123 s))

(base: +) ≡ (lambda (b a . s) (cons (+ a b) s))

Symbols can be bound by the lexical environment. This means the ex-
tension can be used to create closures. The code

14



(let ((plus

(lambda (b a . s)

(cons (+ a b) s))))

(base: 1 plus))

will bind the name plus and interprets it as a function. The result is a
function which adds 1 to the top of the stack. This also works for quoted
symbols, which are treated as constants. The code

(let ((abc 123))

(base: ’abc))

will create a function that loads the number 123 on the stack. This might
seem confusing at first, but it is very similar to the way syntax-case deals
with pattern variables. Inside CAT, a quote means the quoted atom is treated
as literal data. With Scheme metaprogramming CAT, quoted symbols can
be interpolated.

5.2 Extensions

The CAT language has a fixed syntax with pluggable semantics. The follow-
ing syntacting elements are fixed, but their interpretation can be varied per
language. The defaults are

• A non–quoted symbol always refers to a function.

– If a binding is present in the surrounding lexical environment, its
value will be used as function.

– If the module namespace in which the expression occurs contains
a name prefixed with rpn., its value will be used as function.

– If the name occurs free, it will be taken from the global name
space (base).

• A list is treated as a function which loads an abstraction on the stack.
The abstraction is a function built from the composition of the func-
tions in the list.

• A quoted expression is interpreted as a constant function. If the ex-
pression contains a symbol which has a lexical binding, it is substituted
by the associated value.

15



• A quasiquoted expression is interpreted as a constant function. All
unquoted lists are replaced by their function values.

• Anything other than a symbol or a list denotes a constant function.

5.3 State

The Base CAT is not purely functional; some small set of operations including
have side effects, including IO. Since CAT is strict, this doesn’t give problems.
However, there is no doubt that a purely functional programming style has
certain benefits.

Therefore, CAT has an extension that allows hidden threading of state
through a composition. Because of the use of a stack one does not need
to resort to monads to perform this threading. The reason is that a stack
language is a specific instance of a monad language.

Threading is performed by storing the state on top of the stack. The
associated syntax transformation will automaticly dip pure functions so they
ignore the state atom, except for passing it on the next function in a com-
position.

For example the state: macro will compile the state access words state@
and state! to operate on the state, but will transform other words so they
just pass it on. The code

(state: 1 state@ + state!)

implements a counter. This code is equivalent to

(base: (1) dip ;; 1

dup ;; state@

(+) dip ;; +

drop) ;; state!

after syntax expansion. Note how state fetch and store map directly to the
language’s duplication and deletion operators!

It would be interesting to explore the relationship if this fairly simple but
useful syntactic extension, to the more general picture of monads and arrows
[Hughes].

16



6 Purrr State Management

There are two kinds of state to be managed in the Brood system: target state
and host state. Target state consists of binary code stored on a microcon-
troller’s flash ROM and symbolic metadata contained in a .state file. Host
state is the functional code that implements the compiler.

Host state is transparent, which means it can be put in one–to–one relation
with source code. This code is either internal Brood source code, or language
extension macros coming from a Purrr project. The host state is thefore
just a cache and can be automaticly managed and ignored by the Purrr
programmer.

Target state is not transparent. It is created as a consequence of compi-
lation: Purrr code is translated into binary target code, some metadata to
allow symbolic access of that code (dictionary), and the source code for the
macros defined in the project code used to compile other parts in the project
code. Once code is compiled, it looses all relationship with its original source
code, and becomes a separate entity.

In other words, Purr is an incremental image based development system.
It also used early binding. This is quite a low–level approach, and gives up
safety for concreteness. We give up safe (transparent, automatic) synchro-
nization between source code and target state for a more direct access all the
way down to the real machine code.

The the core of Brood itself is not developped as a stateful, image–
based system. Instead it is written incrementally in a transparent declarative
bottom–up fashon, using PLT Scheme’s module system. Such an approach
makes more sense for purely functional programs that contain no cyclic de-
pendencies. Brood is almost entirely functional: only I/O and compiler
compilation cache are managed in an imperative way.

For Purrr, there are several practical reasons for using an image based
approach. Implementing an incremental transparent system for target code is
simply more difficult. It requires a module system to manage dependencies.
In order to reach a small incremental development cycle, one also has to
cut down on upload times. This requires some kind of filesystem on the
target flash ROM, and a way to perform linking, which is complicated due
to the write–once nature of the code memory, and makes some optimizations
impossible. I believe the safety this gains is not worth the cost of complexity
and loss of performance.

Instead, a purely bottom up incremental style is a very simple alternative

17



which requires no filesystem, and no re-linking, so we can resort to a simpler
and more efficient early binding strategy. While it makes cyclic dependencies
harder to solve, it has the very interesting property that adding new code
cannot break stored old code. It can only break run–time data structures.

A disadvantage is that changes to the bottom of a code stack do not
automaticly propagate to code written on top of this. Managing these kind
of changes is the responsability of the programmer: from time to time a
complete reload is necessary. This can be annoying sometimes, but can
mostly be solved by adding some (ad–hoc) form of late binding. In Purrr the
easiest way to do this is to use route or execute.

This paradigm is key to interactive Forth development. Variants can also
be found in image–based Lisp and Smalltalk. However, the latter two use
late binding, which makes image based development more reflective: bar-
ring arbitrary limitations due to optimization, essentially everything can be
changed.

So, the moral of the story: as a programmer interface, we stick with the
Forth paradigm. For the task at hand, it seems to be the better aproach.

7 Goals

The front–end for Brood is currently the Purrr interactive compiler used for
CATkit and Sheep. The most immediate goal is to make that system usable
for real–world development, meaning people other than me that can’t cross
the Purrr/Brood barrier.

• Move Purrr to purely functional macros.

• Add a module system for namespace management.

8 Remarks

I wrote a pattern matching language for writing a Forth peephole optimizing
code generator. This is the main abstraction that is used to implement
the partial evaluation step as a set of greedy recombination rules. This
pattern matching language alludes to the fact that the intermediate target
code representation is really statically typed, where each assembler instruction
represents a different type.

18



One of the great benefits of working with Forth is incremental develop-

ment, which means the ability to add new code to a running system. The
standard Forth approach is to make a system self–hosting, by including a
compiler in a running system. I’ve opted to not do that for a very compelling
and obvious reason. Because of the small size of the systems we intend to
write code for, making it self–hosting is a waste of available technology: it’s
much more comfortable to move the compiler and interaction system to a
more complex development host. This enables the use of a more resource
hungry high level language and better abstraction. It took me a while to
realize this, coming from a fairly lowlevel C and Forth world. In short, all
the machinery which would normally run on a target system is presented in
such a way as if it does, but in fact, it runs on a different system. This gives
some consistency to the user interface.

CATkit is a small board with knobs, to run the Sheep, a 1-bit noise maker
implemented in Purrr18.

Poke is a compositional language VM based on linear memory manage-
ment, combined with external non–linear memory management. What this
means is that the reflection system has access to the code the core VM is
running, but not to its data structures.

19


