
B-Control MIDI Implementation

Version 1.2.6
Copyright © 2007-2012 by Mark van den Berg

1 Introduction

This document describes the MIDI features of Behringer’s ‘B-Control’ devices BCF2000 and BCR2000
under firmware version 1.10.

Regrettably, Behringer have never released details of the MIDI implementation of these devices,
so everything in this document is based on ‘third-party’ investigations. Consequently, certain details may
be wrong, and I accept no responsibility for any damage caused by any errors in this document.

This document owes a lot to Michael Kukat’s B-Control-Konfiguration1 and
B-Control-Tokenreferenz2 web pages about BCL (the B-Control Language), and also to the work by
Royce Craven in the Yahoo BC2000 users group. I also thank Royce for providing feedback to version
0.1 of this document, and apologize for taking so long to process his suggestions.

In this document, a sequence of three asterisks (***) indicates a passage that is still incomplete
or inaccurate. Any comments, suggestions or corrections are welcome.

All references to Behringer’s official B-Control manual concern version 1.1, October 2004.3

1 http://www.sequencer.de/synth/index.php/B-Control-Konfiguration

2 http://www.sequencer.de/synth/index.php/B-Control-Tokenreferenz

3 I have used both the German and English versions, BCF2000_BCR2000_GER_Rev_C.pdf and
BCF2000_BCR2000_ENG_Rev_C.pdf respectively. In some cases there are important differences between the two, as discussed.

1

2 Contents

1 Introduction. 1
2 Contents. 2
3 Terminology. 5
4 Notational conventions. 6
5 Document version history. 7
6 MIDI System Exclusive messages. 9

6.1 Commands. 10
7 BCL messages. 13

7.1 MIDI format.. 13
8 BCL text. 14

8.1 Case-sensitivity. 14
8.2 Spaces. 14
8.3 Empty lines. 14
8.4 Comments. 14
8.5 Numbers.. 14

9 BCL blocks. 15
9.1 Block Start statement.. 16
9.2 Block End statement. 17

10 BCL sections.. 18
11 Side-effects of BCL section selector statements. 19

11.1 Reinitialization of settings. 19
11.2 Multiple occurrences of the same section selector statement. 20
11.3 Invalid element selector statements. 21

12 Global setup. 22
12.1 MIDI mode. 23
12.2 Startup preset. 24
12.3 Foot switch. 25
12.4 Receive channel. 26
12.5 Device ID.. 27
12.6 Transmission interval. 28
12.7 Dead time.. 29
12.8 Factory defaults. 30

13 Presets. 31
13.1 Name. 32
13.2 Snapshot.. 33
13.3 Request. 34
13.4 Encoder groups. 35
13.5 Function keys.. 36
13.6 Lock. 37
13.7 LEARN output.. 38
13.8 Initialization of all elements. 40

14 Control elements. 41
14.1 Standard output. 42

14.1.1 GS/XG Main Control parameters.. 44
14.2 Show value.. 45
14.3 Default value. 46
14.4 Current value. 47
14.5 Physical mapping.. 48

2

14.6 Custom output. 49
14.6.1 Data Specifier. 50
14.6.2 Change Definition. 51
14.6.3 Checksum Definition. 53
14.6.4 Direction Specifier. 55
14.6.5 Repeat. 56
14.6.6 Length of custom MIDI output definitions. 57

14.7 Local. 58
14.8 Standard vs. custom MIDI output. 59
14.9 Value synchronization. 60

14.9.1 Button increment mode. 61
14.9.2 Encoder resolutions. 62
14.9.3 Frankenstein faders (a.k.a. fader calibration test). 63

15 Buttons. 64
15.1 Standard output. 66
15.2 Program Change. 67
15.3 Control Change. 68
15.4 NRPN (Non-Registered Parameter Number). 70
15.5 Note. 72
15.6 Aftertouch. 73
15.7 MMC (MIDI Machine Control).. 75
15.8 GS/XG. 77
15.9 Mode. 78
15.10 Increment mode. 80

16 Continuous elements (encoders/faders).. 82
16.1 Standard output. 82
16.2 Program Change. 83
16.3 Control Change. 84
16.4 NRPN (Non-Registered Parameter Number). 87
16.5 Pitch Bend. 88
16.6 Aftertouch. 89
16.7 GS/XG. 90

17 Encoders. 91
17.1 Standard output. 93
17.2 Mode. 94
17.3 Resolution. 95

18 Faders. 98
18.1 Standard output. 100
18.2 Motor. 101
18.3 Override. 102
18.4 Key-override. 103

19 Memory presets. 104
19.1 Recall. 105
19.2 Store.. 106
19.3 Preset selection. 107

20 Unknown dot statements.. 108
21 BCL Reply messages. 109

21.1 MIDI format.. 109
21.2 Error codes.. 110

21.2.1 Error 0.. 111
21.2.2 Error 1.. 112

3

21.2.3 Error 2.. 113
21.2.4 Error 3.. 114
21.2.5 Error 4.. 115
21.2.6 Error 5.. 116
21.2.7 Error 6.. 117
21.2.8 Error 7.. 118
21.2.9 Error 8.. 119
21.2.10 Error 9.. 120
21.2.11 Error 10.. 121
21.2.12 Error 11.. 122
21.2.13 Error 12.. 123
21.2.14 Error 13.. 124
21.2.15 Error 14.. 125
21.2.16 Error 15.. 126
21.2.17 Error 16.. 127
21.2.18 Error 17.. 128
21.2.19 Error 18.. 129
21.2.20 Error 19.. 130
21.2.21 Error 20.. 131
21.2.22 Error 21.. 132
21.2.23 Error 22.. 133
21.2.24 Error 23.. 134

22 Startup functions. 135
22.1 Bootloader mode. 136
22.2 Initialization of temporary preset. 137
22.3 The BCF2000 emulation modes. 138

22.3.1 Emulation mode identity SysEx messages. 139
23 Functions in standard B-Control mode. 142

23.1 LEARN. 143
23.2 Data Request. 144
23.3 Panic Reset. 145
23.4 Snapshot Send. 146
23.5 Select Preset.. 147

4

3 Terminology

BCF:
Abbreviation of the BCF2000 device.

BCR:
Abbreviation of the BCR2000 device.

BC:
Abbreviation used for a ‘generic’ device, i.e. when something applies to both the BCF and the
BCR. (But beware: most of my testing was only performed on a BCR, so it is not always certain
that the use of the word ‘BC’ (rather than ‘BCR’) is warranted.)

B-Control Language (BCL):
The language used by the BCF2000 and BCR2000 in SysEx messages using command $20.

Note: ‘BCL’ is probably indeed Behringer’s ‘official’ name, cf. the file BCL.class in the B-
Edit Java package, which contains the identifiers for this language.

BCL line:
A line of text in BCL format.

BCL statement:
A BCL line that actually does something (rather than being empty or containing just a comment).

BCL dollar statement:
A BCL statement starting with ‘$’. Semantically there are three subcategories:
1. Block statements: $rev and $end.
2. Section selectors: $global, $preset, $button, $encoder and $fader.
3. Commands: $recall and $store.

BCL dot statement:
A BCL statement starting with ‘.’. Each dot statement type can only occur after the appropriate
section selector type(s). A dot statement affects the state of the current section (i.e. global setup,
preset, button, encoder or fader).

BCL message:
A MIDI message (using command $20) containing a BCL line. (Technically the BCL line is
embedded in the MIDI message.)

BCL message chain:
A sequence of BCL messages, where the first message’s index is zero and each message’s index
is 1 higher than that of the previous message.

5

4 Notational conventions

! BCL text is written in Courier bold typeface.

! Variables are written in italics.

! In syntactic definitions, optional elements are written between square brackets, e.g. [Comment].
The brackets themselves should never be included in actual BCL text.

! Hexadecimal numbers (usually bytes) are written with the prefix ‘$’, except in a few cases where
hexadecimal byte sequences are simply shown in Courier font.

! Arithmetic and bit operators are written in bold typeface: div, mod, and, or, shr.

6

5 Document version history

Version 1.2.6 (2012-08-23):
! The BC’s behavior upon reception of a .deviceid statement is specified.
! Minor stylistic improvements.

Version 1.2.5 (2011-10-21):
A few typos were corrected.

Version 1.2.4 (2011-03-07):
Minor cosmetic edits.

Version 1.2.3 (2010-11-05):
! Waldorf’s use of cks-2 is mentioned.
! A few stylistic and terminological improvements.

Version 1.2.2 (2010-07-17):
! Description of the Send Text command.
! The internal data size of Active Sensing ($FE) in LEARN/custom output is specified.
! The sections of the BCL Reply error codes have been relegated to section 21.2.
! A few small cosmetic improvements.

Version 1.2.1 (2009-08-06):
! Description of the BC’s handling of BCL message chains containing more than 16384 messages.
! Description of the BC’s bug concerning the LEDs of the LEARN, EDIT and EXIT buttons after

a transition from .fkeys off to .fkeys on.
! A typo has been corrected, and a few stylistic changes have been made.

Version 1.2 (2009-04-30):
! The .easypar CC, NRPN, AT and GS/XG sections for buttons now take account of the fact that

the Value2 parameter can be off.

Version 1.1:
! A few conceptual errors concerning ntimes have been corrected.
! The interaction between .mode incval and .minmax is now described correctly.
! Some information on the BCF’s emulation mode identity messages has been added.
! The pdf file includes bookmarks for the document sections. In view of this, some additional

section headings have been defined, and all references to pages have been replaced with references
to sections.

! A few minor changes in terminology.
! Some typos have been corrected.

Version 1.0:
! The .txinterval and .deadtime sections have been extended. This includes the

specification of the factory settings.
! The section on side-effects of section selector statements has been largely rewritten.
! The section on the Default setting has been largely rewritten, and a related section on Value has

been added.

7

! The incorrect claims about the use of apostrophes in preset names (cf. .name) have been
corrected.

! The facts concerning bare element selector statements are described.
! The .tx section for control elements has been worked out.
! The newly discovered incval parameter to the button .mode statement is described.
! The description of the button increment algorithm has been improved by taking the Default

setting into account.
! Several new topics are discussed in depth: value synchronization, startup functions and functions

in standard B-Control mode (in particular Panic Reset).
! Some typos have been corrected.
! The layout of a few tables has been improved.
! Numerous other corrections and additions have been made.

Version 0.1: First published version.

8

6 MIDI System Exclusive messages

When functioning in standard B-Control mode (cf. §22), the BCF2000 and BCR2000 use the following
format for MIDI System Exclusive messages:

Item description MIDI byte(s)

System Exclusive $F0

Manufacturer $00 $20 $32 (=Behringer)

Device ID $0x (0..15) (=actual device’s ID !1) or $7F (=any)

Model $14 (=BCF2000) or $15 (=BCR2000) or $7F (=any)

Command 0bbbbbbb (see table on following pages)

Data sequence of zero or more bytes (0bbbbbbb); depends on Command

End-Of-Exclusive $F7

Any BCF2000 or BCR2000 responds to the $7F-wildcards for Device ID and Model, but only sends its
own Device ID and Model. Each device’s Device ID can be changed via its Global Setup.

9

6.1 Commands

Command Meaning Data To BC From BC Comments

$01 Request Identity ! ! ! BC-EDIT uses Device ID $7F for this
command, twice per MIDI output device:
first Model $14, then Model $15.
I have verified that using Device ID $7F
and/or Model $7F works too.
Reply: Send Identity.

$02 Send Identity Identity string
(e.g. ‘BCF2000 1.10’ or ‘BCR2000 1.10’)

! ! Reply to Request Identity.

$20 Send BCL Message Text line (0 to abt. 512 characters) ! ! See §7.
Reply: BCL Reply.

$21 BCL Reply 1. Message index (2 bytes, i.e. 14 bits,
MSB first)

2. Error code (1 byte)

! ! Reply to Send BCL Message. See §21.

Send Preset Name 1. Zero (1 byte)
2. Preset index (1 byte): 0..31/$7F
3. Preset name (exactly 24 characters; not

between quotes)

! ! This uses the same command byte ($21) as
BCL Reply, but the message length is
different.

$22 Select Preset 0..31: single memory preset (!1) ! ! BC responds by selecting the memory
preset (but does not send a MIDI reply
message). If the preset value is out of
range, absolutely nothing happens.

$34 Send Firmware 296 bytes (encrypted) ! ! Cf. bcf2000_1-10.syx etc.

10

Command Meaning Data To BC From BC Comments

$35 Firmware Reply 1. 2 bytes (i.e. 14 bits, MSB first),
indicating memory address (divided by
$100) of firmware in 16th Send
Firmware message

2. Error code (1 byte): 0 = no error; 1=
error; other values never encountered
yet

! ! Reply to every 16th Send Firmware
message. As far as I’ve seen, whenever the
error code is 1, the BC’s display briefly
shows ‘Err5’; this makes sense,

considering that BCL Reply error 5 means
‘wrong revision’ (see §21).

$40 Request Data 0..31: single memory preset (MemoryPreset
!1)

! ! Reply: BCL message chain (not including
$store MemoryPreset immediately

before $end).

$7E: global setup + all filled memory presets ! ! Reply: BCL message chain.

$7F: temporary preset ! ! Reply: BCL message chain.

$41 Request Global Setup ! ! ! Reply: BCL message chain.

$42 Request Preset Name 0..31: single memory preset (!1) ! ! Reply: Send Preset Name (same preset
index).

$7E: all memory presets (not just the filled
ones!)

Reply: 32 separate Send Preset Name
(preset indexes 0..31).

$7F: temporary preset Reply: Send Preset Name (preset index
$7F).

$43 Request Snapshot ! ! ! Requests current element values.
Reply: snapshot (see §23.4).

11

Command Meaning Data To BC From BC Comments

$78 Send Text 1. index of first character (0..111(?))
2. characters
(The BCFView utility interprets this as two
lines of 56 characters each.)

! ! Passed-on text message from controlling
device in any BCF’s emulation mode
except Baby HUI.

12

7 BCL messages

7.1 MIDI format

Item description MIDI byte(s)

System Exclusive $F0

Manufacturer $00 $20 $32 (=Behringer)

Device ID $0x (0..15) (=actual device’s ID !1) or $7F (=any)

Model $14 (=BCF2000) or $15 (=BCR2000) or $7F (=any)

Command $20 (=BCL message)

Index MSB 0bbbbbbb

Index LSB 0bbbbbbb

BCL text line sequence of 0 or more* characters (#32..#127)

End-Of-Exclusive $F7

Index MSB and Index LSB together constitute a 14-bit index from 0 to 16383. The first BCL message
in a message chain (normally a $rev statement) should have index 0, and each message’s index should
be 1 higher than that of the previous message. (The last message in a chain is normally ‘$end’.)

The BC’s handling of message chains consisting of more than 16384 messages is inconsistent:
! The only case in which the BC may need to send more than 16384 BCL messages is in response

to a data request for its global setup and filled memory presets (Request Data (command $40,
subfunction $7E). In this case the BC wraps the index back to 0 after it has reached 16383.

! However, when receiving data, the BC does not accept a BCL chain consisting of more than 16384
messages. Instead, whenever the BC receives a message containing index 0, it interprets this as the
start of a new chain. Consequently, the BC then expects a $rev statement, and the statements that
continue the intended ‘wrapped’ chain tend to lead to BCL Reply errors 8 and 6 (in that order).
Thus, the BC cannot read back a wrapped chain that it has produced itself upon a data request for
its global setup and filled memory presets!

* There is (roughly) a 512-character limit for BCL text lines, so probably the BC uses a 512-byte buffer
for BCL text lines.

13

8 BCL text

8.1 Case-sensitivity

All BCL identifiers are case-sensitive. The BC rejects any BCL identifier containing incorrect case, and
returns a BCL reply message specifying an error related to the offending identifier.

The only exception to this constraint are the hexadecimal digits ‘A’ .. ‘F’, which may be sent to
the BC in either upper or lower case. The BC itself always outputs these in upper case.

8.2 Spaces

Extra spaces may be inserted anywhere between identifiers in a BCL statement.
The BC itself always indents any dot statement by means of two spaces. However, these spaces

may be left out when you send any dot statement to the BC.

8.3 Empty lines

Empty lines may be inserted anywhere in a BCL chain. The BC itself never sends empty lines.

8.4 Comments

Syntax: [BCL statement];[Comment]

BCL lines sent to the BC can include any comments after a semicolon (‘;’). (Other characters like hash
(‘#’) and double slash (//), which also often function as comment initiators in computer languages (and
indeed in several BC utilities), are not allowed in this respect.)

For instance:

$store 1; this stores the current preset
; this is a self-referential comment

A semicolon inside .name’s PresetName argument (e.g. ‘.name 'abc;xyz'’) is interpreted
as a normal character, i.e. not as a comment initiator.

The BC itself never sends comments. (So comments in BCL lines sent to the BC are not retained
when the BC sends the ‘same’ BCL lines back to the computer, e.g. via a preset dump.)

8.5 Numbers

Positive numbers cannot be preceded by ‘+’.

14

9 BCL blocks

A BCL block is a sequence of BCL lines, normally starting with a $rev statement and ending with a
$end statement.

A standard BCL block has the following structure:

Block Start statement
[Embedded lines]
Block End statement

A BCL chain sent from the BC consists of exactly one standard block that contains at least one section.
However, BCL chains sent to the BC may deviate from this in several ways:

1. A chain may consist of a sequence of blocks.
2. The Block End statement may be absent from a block.
3. A block may consist of only a Block End statement. (This is of course totally meaningless, but the

BC reports no error.)

15

9.1 Block Start statement

Syntax:
To the BCF2000: $rev F[Revision]
To the BCR2000: $rev R[Revision]
From the BCF2000: $rev F1
From the BCR2000: $rev R1

$rev requires a single argument. Normally this argument consists of two parts (the second is actually
optional):

1. Model: a single character, indicating the type of the hardware device (BCF2000 or BCR2000) that
the subsequent BCL lines address. ‘F’ stands for the BCF2000, ‘R’ for the BCR2000. Any other
character than the one expected by the receiving hardware device causes BCL error 4. In
accordance with the general BCL case-sensitivity rule, the BCF and BCR do not accept lower case
for ‘F’ and ‘R’ respectively.

2. Revision: the version of BCL that is going to be used in the subsequent BCL lines.
Normally Revision is a single ‘1’: the BCF and BCR themselves always send this. However,

the BCF and BCR accept any sequence of characters, provided that the first character is not ‘0’
(this results in BCL error 5). So a BCR accepts nonsense like ‘$rev Rh38f!hP*d0gf084t’,
but not ‘$rev R0’ or ‘$rev R01’! (The reason for the exclusion of the starting ‘0’ may be that
the earliest BCF/BCR firmware version(s) (at least before 1.07) had ‘0’ here, although this is pure
speculation.)

Revision may also be left out altogether, so you can send simply ‘$rev F’ and ‘$rev R’
to the BCF and the BCR respectively.

16

9.2 Block End statement

Syntax: $end

Nitpicker’s note: as indicated above, $end should have no arguments. However, the BC responds
inconsistently to any ‘garbage’ after $end, in ways similar to its response to garbage in $preset
statements (q.v.).

17

10 BCL sections

A BCL section is a sequence of BCL lines pertaining to a particular section of the BC’s memory (either
the global setup area or a subsection of the temporary preset). Any BCL section must be embedded in
a BCL block (basically this means that there must be a previous $rev statement).

A BCL section starts with a section selector statement, which can be one of the following:

$global
$preset
$button Button
$encoder Encoder
$fader Fader

A BCL section ends immediately before the next dollar statement (in other words, BCL does not have
a dedicated section-ending statement comparable to $end for BCL blocks). A BCL section contains zero
or more dot statements.

The order of sections in a preset dump from a BC is as follows:
1. The preset section.
2. The encoder sections (from low to high) for those encoders that contain one or more non-default

settings.
3. The button sections (similarly).
4. BCF only: the fader sections (similarly).

18

11 Side-effects of BCL section selector statements

11.1 Reinitialization of settings

All section selector statements except $global (i.e. $preset, $button Button, $encoder
Encoder and $fader Fader) reset all the indicated section’s settings.

A $global section without any dot statements does absolutely nothing:

$rev R1
$global ; doesn't change any global settings
$end

And here the only global settings affected are TransmissionInterval and DeadTime:

$rev R1
$global
 .txinterval 10
 .deadtime 50
$end

The values of the other global setup settings (MidiMode, StartupPreset etc.) are not affected here.

On the other hand, all preset settings are reset after

$rev R1
$preset ; resets all preset settings
$end

In particular, Name is set to 24 spaces, EncoderGroups to 4, Snapshot, Request and Lock to off,
FunctionKeys to on, and any .minmax or .tx settings are removed.

However, $preset does not clear the preset’s elements (buttons, encoders and faders): that can only
be achieved by a .init statement in the $preset section:

$rev R1
$preset ; resets all the preset's settings (Name etc.)
 .init ; clears all the preset's elements (buttons/encoders/faders)
$end

19

11.2 Multiple occurrences of the same section selector statement

It is syntactically legal for a BCL chain to contain the same section selector statement more than once.
However, the fact that preset and element section selector statements clear their respective settings means
that only the dot statements after the last copy of a particular section selector statement actually stick.
Any values set in previous sections introduced by the same selector statement are reset to their defaults.
So in effect you cannot send a sequence of ‘partial’ sections for presets, buttons, encoders or faders.

This constraint is particularly relevant to the related pair of .request and .tx. Consider the following
BCL block:

$rev R1
$preset
 .request on
$preset
 .tx $F0 $F7
$store 32
$end

The problem here is that the second $preset statement causes the BCR to reset Request to off.
Consequently, contrary to what you might expect (cf. §19.3), the BCR will not send the MIDI bytes
specified in the .tx statement upon selection of preset 32.

On the other hand, since a global setup selector statement does not reset any global settings, you can
safely send a sequence of partial $global sections. For instance:

$rev R1
$global
 .txinterval 10
$global
 .deadtime 10
$end

This block has exactly the same effect as the example in §11.1 where the .txinterval and
.deadtime statements occur under a single global setup selector statement.

20

11.3 Invalid element selector statements

As described earlier, any element selector statement ($button, $encoder or $fader) needs exactly
one argument: Button, Encoder or Fader, respectively. This should be the number of an existing element
of the specified type. Thus, there are two ways in which an element selector statement can be invalid:

1. The argument is missing altogether. In this case the BC replies with BCL error 14: ‘Invalid number
of arguments’.

2. The number indicated by the argument is out of range. In this case the BC replies with BCL error
9: ‘Element number out of range’.

However, in both cases there is still a very noticeable effect: the most recently selected element of the
specified type gets reselected, and any further statements in the same BCL block are processed
accordingly. (Interestingly, the reselected element’s settings are not initialized.)

This reselection occurs even if the previous selection occurred via an element selector statement
in a previous BCL chain. In other words, the BC maintains Button, Encoder and Fader permanently.

In this respect it is also noteworthy that a .init statement (in a $preset section) has the side-
effect of setting Button, Encoder and Fader to their respective highest existing elements: so on the BCF
Button becomes 64, Encoder 32 and Fader 9, and on the BCR Button becomes 64 and Encoder 56. The
same values are selected after the BC has been switched on: this is understandable, since the BC
automatically copies a memory preset to the temporary preset.

21

12 Global setup

A global setup section in a BCL block is introduced by a global setup selector statement:

BCL syntax: $global

Nitpicker’s note: as indicated above, a global setup selector statement should have no arguments.
However, the BC responds inconsistently to any ‘garbage’ after $global, in ways similar to its
response to garbage in preset selector statements (q.v.).

A global setup section sent by a BC contains the following dot statements (in this order):

.midimode MidiMode

.startup StartupPreset

.footsw FootSwitch

.rxch ReceiveChannel

.deviceid DeviceID

.txinterval TransmissionInterval

.deadtime DeadTime

Details on these dot statements follow on the next pages.

22

12.1 MIDI mode

BCL syntax: .midimode MidiMode
MidiMode 0 {U-1, U-2, U-3, U-4, S-1, S-2, S-3, S-4}

This determines the BC’s MIDI signal flow to and from its MIDI and USB sockets. Refer to the B-
Control manual for details.

You should be very careful when changing this setting (either via the BC’s Global Setup edit mode (via
STORE + EDIT) or from a computer program), because of the software ‘rewiring’ this causes. In
particular, the running USB driver may be closed and reopened, so that any running audio programs may
run into trouble (because they remain connected to the now defunct BC’s USB-based MIDI devices). It
is always best to close and reopen such programs immediately.

23

12.2 Startup preset

BCL syntax: .startup StartupPreset
StartupPreset 0 {last, 1 .. 32}

This determines which memory preset becomes active (as the ‘temporary’ preset) when the BC gets
switched on. last (the default) means that the memory preset that was active when the BC was last
switched off becomes active again upon startup.

What actually happens when a memory preset becomes active is that all its settings (except its
elements’ Value settings) are copied to the temporary preset. When the BC is turned off, any edits made
to the temporary preset that haven’t been saved to a memory preset are lost.

24

12.3 Foot switch

BCL syntax: .footsw FootSwitch
FootSwitch 0 {norm, inv, auto}

In terms of wiring, foot switches come in two versions: those whose electrical circuit is closed (i.e. has
zero resistance) when the pedal is up (released), and those where the circuit is closed when the pedal is
down (pressed).

You can connect 1 foot switch to the BCF and 2 foot switches to the BCR. In both cases, the
FootSwitch setting determines how the electrical signals coming from these foot switches are interpreted:
On the BCF and BCR, a foot switch that has a closed circuit in the down position is called ‘normal’, and
you should set FootSwitch to norm for such a switch. A foot switch that has a closed circuit in the up
position is considered ‘inverted’, and you should select inv for it. (Note: there is no industrial norm for
what is ‘normal’ for foot switches: there are also audio hardware devices which consider a foot switch
with a closed circuit in the up position ‘normal’!)

Alternatively you can set FootSwitch to auto. This causes the BC to autodetect the wiring of any
foot switch when the BC is turned on (or when FootSwitch has just been set to auto).

In principle auto is just a way to relieve the user from the obligation to know the wiring of the
pedals, but in one situation it is necessary to select auto: If you connect one normal and one inverted
pedal to a BCR, and then set FootSwitch to norm or inv, one of the pedals gets interpreted incorrectly,
since the single FootSwitch setting of norm or inv applies similarly to both pedals (this is definitely
a design flaw of the BCR). However, if you select auto in this situation, the BCR autodetects each of
the two different pedals correctly — so internally the BCR does maintain two settings then!

In fact, auto is the default for FootSwitch, and given the above considerations there is no reason
to change this setting, unless for some strange reason autodetection fails for your foot switch(es).

25

12.4 Receive channel

BCL syntax: .rxch ReceiveChannel
ReceiveChannel 0 {off, 1..16}

If a MIDI Program Change message is sent to the BC via MIDI input channel ReceiveChannel, the BC
responds by selecting the preset corresponding with the message’s program number. (See §19.3 for more
information.) If ReceiveChannel is off, the BC doesn’t respond to any Program Change messages.

26

12.5 Device ID

BCL syntax: .deviceid DeviceID
DeviceID 0 {1 .. 16}

DeviceID is used in two ways:

1. In MIDI System Exclusive messages for BCs (see §6):
a. Each BC always uses its own DeviceID in the MIDI SysEx messages it sends.
b. Any message sent to a BC must specify that BC’s DeviceID or $7F, otherwise that BC

doesn’t react.
When a BC receives a .deviceid message, it returns a BCL Reply message still using its old
DeviceID. However, after this the BC switches to the new DeviceID immediately, so any further
SysEx messages to the BC (even BCL messages in the same chain!) must use the new DeviceID
(or $7F, of course).

2. If a BC is in a USB-based MIDI mode (i.e. MidiMode 0 {U-1 .. U-4}), the pre-Windows 7
Behringer USB drivers (vs. 1.1.1.0, 1.1.1.1 and 1.2.1.3) generate MIDI input and output device
names containing the BC’s DeviceID between square brackets.

Beware: in this situation you must be very careful: changing DeviceID causes the USB
driver to close and reopen the BC’s USB-based MIDI input and output devices. Also see the
remarks in §12.1.

27

12.6 Transmission interval

BCL syntax: .txinterval TransmissionInterval
TransmissionInterval 0 {2, 5, 10, 20, 50, 100}

Note that only the stated values for TransmissionInterval are allowed. So no rounding-down takes place:
e.g. sending a value of 3 to the BC causes BCL error 11.

TransmissionInterval determines the minimum time interval in milliseconds that must elapse before the
BC sends an element’s MIDI output again after the user has physically changed that element’s value for
the second time in rapid succession. Note though, that if an element’s MIDI output consists of multiple
messages, these are always sent in one go, with no reference to TransmissionInterval. Furthermore,
TransmissionInterval does not restrict the intervals between the messages of different elements: for
instance, when you move two encoders or faders simultaneously, their respective MIDI messages are sent
virtually simultaneously too.

Notes:

! The English version of the BCF/BCR manual (version 1.1, section 4.5) claims that
TransmissionInterval ‘only has an effect on MIDI Data packs such as SysEx dumps and not on
controlling of MIDI commands (they are carried out in real time anyway).’ The rather shaky
English here seems caused by clumsy translation from the original German version. However, the
German version basically makes the same claims, and these are almost totally wrong. In reality
TransmissionInterval works as follows:
! TransmissionInterval does not affect the timing of SysEx dumps (e.g. of presets).
! TransmissionInterval does affect the timing of any element’s MIDI output. It doesn’t matter

whether this output has been defined via a standard output statement or via custom output
statements, nor does it matter of what type this output is: MIDI channel messages, SysEx
messages, or other.

! Behringer’s most recent B-Control manual, i.e. version 1.1 (available from the Behringer website),
explains that TransmissionInterval (‘MIDI Data Interval’) can be changed manually on the
BCF/BCR via push encoder 8 in Global Setup mode (which is accessed via EDIT + STORE).

Beware: the manual that came with your BCF/BCR may well be version 1.0: this version
does not mention TransmissionInterval.

! The B-Control-Tokenreferenz web page suggests that TransmissionInterval only exists as of
firmware version 1.10, but this isn’t so. In any case it already existed in 1.07; in line with this, all
Behringer’s published syx preset files contain .txinterval statements (this contrasts with the
situation for .deadtime).

28

12.7 Dead time

BCL syntax: .deadtime DeadTime
DeadTime 0 {0 .. 1000}

DeadTime indicates the time in milliseconds during which an encoder or fader (including the BCF’s Foot
Controller) remains impervious to MIDI messages received by the BC after being physically manipulated
by the user. An encoder or fader ignores any incoming MIDI messages that arrive within the DeadTime
window after you last moved the encoder or fader. These interfering MIDI messages may be data from
a running sequencer; they could also be the very messages triggered by your own manipulation of the
encoder or fader if there is a feedback loop, which would be particularly uncomfortable if the feedback
loop has a relatively long delay.

Perhaps most importantly, a high value for DeadTime can prevent a fader’s motor from being
triggered by an interfering incoming MIDI message and thereby jerking the fader away from under your
fingers while you are moving it manually. Preventing this should be good for both your nerves and the
fader’s motor!

Note that buttons (including the Foot Switch(es)) do not adhere to DeadTime: they always react
to incoming MIDI messages.

The BC only sends DeadTime in multiples of 10.
You can send any whole number in the range from 0 to 1000 to the BC, but the BC rounds down

any value to a multiple of 10 (i.e. DeadTime ! DeadTime mod 10). Note that the upper limit of 1000 is
strictly enforced: even 1001 causes BCL error 11; in other words, the range check takes place before the
rounding down.

DeadTime is an obscure setting: it isn’t mentioned in Behringer’s B-Control manual (in whatever
version), and the syx preset files available from Behringer’s website don’t contain .deadtime
statements. (These facts suggest that DeadTime didn’t yet exist in the earliest firmware versions, but in
any case it was already present in version 1.07.)

Note: although the B-Control manual doesn’t mention DeadTime in its global setup section, DeadTime
can actually be set manually on the BCF/BCR via push encoder 7 in Global Setup mode (which is
accessed via EDIT + STORE).

29

12.8 Factory defaults

The table below contains the factory defaults for the global settings. For convenience, it also indicates
the push encoders via which you can edit the settings manually on the BCF/BCR in Global Setup mode
(accessed via EDIT + STORE).

Setting Factory default Push encoder

BCF2000 BCR2000

MidiMode U-3 1

StartupPreset last 4

FootSwitch auto 3

ReceiveChannel off 2

DeviceID 1 5

TransmissionInterval 20 2 8

DeadTime 100 0 7

As this table shows, the BCF2000’s factory defaults for TransmissionInterval and DeadTime are higher
than those of the BCR2000. The philosophy behind this is probably that the BCF2000’s motorized faders
are more vulnerable when it comes to conflicts between the values entered via physical manipulation and
values sent to it via MIDI (triggering the motors).

Note: most of the factory defaults shown in the above table also occur in the files
bcf_FACTORY_PRESETS.syx and bcr_FACTORY_PRESETS.syx, as available from Behringer’s
website (they are included in Factory_Presets_BCF.zip and Factory_Presets_BCR.zip respectively).

Beware: Propellerhead’s Reason (in any case versions 3.0 and 4.0) sets TransmissionInterval to 2 and
DeadTime to 400 for both the BCF and BCR, and does not restore the original values after it has run.
Totally reprehensible!

30

13 Presets

A preset section in a BCL block is introduced by a preset selector statement:

BCL syntax: $preset

Nitpicker’s note: as specified above, a preset selector statement should have no arguments. However, in
fact the BC is very messy concerning its checking of this: basically any sequence of arguments after
$preset is wrongly accepted and correctly ignored, e.g. ‘$preset nonsense 1234567890
!@#$%^&*()_+’. However, if any unrecognized dot statement identifier occurs (e.g. ‘$preset
.boo’), then the BC replies with error 1. On the other hand, if all dot statement identifiers are
recognized (e.g. ‘$preset .init .easypar’), the BC reports no error, but of course the BC does
not actually try to execute any dot statement!

A preset selector statement sets all preset settings to the following values:

Setting Value

PresetName ' ' (i.e. 24 spaces)

Snapshot off

Request off

EncoderGroups 4

FunctionKeys on

Lock off

LearnOutput cleared

LearnOutput is a sequence of zero or more LEARN output statements. A LEARN output statement is a
.tx statement followed by one or more bytes in decimal or hexadecimal format.

A preset section sent by a BC contains the following dot statements (in this order):

 .name PresetName
 .snapshot Snapshot
 .request Request
 .egroups EncoderGroups
 .fkeys FunctionKeys
 .lock Lock
 LearnOutput
 .init

Details on these dot statements follow on the next pages.

31

13.1 Name

BCL syntax: .name 'PresetName'

If this statement is sent to the BC, PresetName can have any length from 0 to 24 characters. The BC itself
always sends all 24 characters (typically with a lot of spaces at the end). PresetName cannot be longer
than 24 characters: the BC then returns error 12.

The allowed character range is #32 .. #127. If you send a character in the range #0 .. #31 to the BC,
the BC still replies with ‘no error’ (i.e. error 0), but does convert the character to a dot (#46), except #0,
which cuts off the name at the point it occurs.

Character #39, the apostrophe ('), functions as a meta-character in the .name statement, so
unsurprisingly the way the BC scans the .name statement causes several peculiarities concerning
apostrophes:

! If you forget the terminating apostrophe, the final character of PresetName is interpreted as the
terminator, causing the BC to remove it from the actual name. So for instance if you send

.name 'sleepy

to the BC, a subsequent preset dump from the BC returns this as

.name 'sleep '

! The inclusion of one or more apostrophes within PresetName often causes the BC to return BCL
error 14 (‘Invalid number of arguments’). The BC has then wrongly interpreted an apostrophe as
PresetName’s terminator, so that the rest of PresetName has been interpreted as an unexpected
extra parameter.

But even when the BC returns no error, the resulting PresetName in the BC may differ from
one that was sent to the BC, and in many cases this altered PresetName will then trigger error 14
after all when you retrieve it from the BC and send it back to the BC!

So to avoid problems, it is advisable not to include any apostrophes in PresetName.

32

13.2 Snapshot

BCL syntax: .snapshot Snapshot
Snapshot 0 {off, on}

If Snapshot is on, the BC automatically outputs a ‘snapshot’ upon selection of a preset. That is: the BC
sends any defined standard and/or custom output of the elements in the active memory preset, excluding
elements whose Value setting is off. See §23.4 for further discussion.

Note that even the Value settings sent in this ‘initial’ snapshot are indeed the latest values: not
(generally speaking) the default values, as defined in the stored state of the memory preset. This is
because the BC maintains the latest values of each of its 32 memory presets even across changes from
one preset to another, as can be demonstrated easily:
1. Start the BC, and select preset 1 (if it isn’t already selected).
2. Change an encoder’s default value (let’s call this value D) by turning its knob, and memorize the

new value (we’ll call this E).
3. Select preset 2 (via ‘PRESET <’). The encoder now indicates its value for preset 2 (which may of

course be totally different).
4. Reselect preset 1 (via ‘= PRESET’). The encoder gets restored to the latest value for preset 1, i.e.

E, not D. If Snapshot is on, this reselection of preset 1 also causes the BC to send E to the
computer, not D.

Irrespective of the value of Snapshot, you can always trigger a snapshot manually by pressing EDIT +
‘= PRESET’, cf. §23.4.

33

13.3 Request

BCL syntax: .request Request
Request 0 {off, on}

If Request is on, the MIDI bytes defined by LearnOutput (cf. §13.7) are sent upon selection of the preset.
If Snapshot is on too, the LearnOutput MIDI bytes are sent before the snapshot.

Irrespective of the value of Request, you can always make the BC output the MIDI bytes defined by
LearnOutput manually by pressing EDIT + LEARN, cf. §23.2.

34

13.4 Encoder groups

BCL syntax: .egroups EncoderGroups
EncoderGroups 0 {1, 2, 3, 4}

There are 8 push encoders, each of which can operate as 4 separate (virtual) buttons and 4 separate
(virtual) encoders. Group 1 contains buttons/encoders 1-8, group 2 9-16, group 3 17-24 and group 4 25-
32.

By default, all 4 push encoder groups are available, and group selection occurs by means of the
4 buttons in the ‘ENCODER GROUPS’ block. However, if fewer than 4 push encoder groups are needed,
some or all of the ‘ENCODER GROUPS’ buttons can be used as independent buttons.

EncoderGroups indicates the last push encoder group that is actually available:

EncoderGroups Available
buttons/encoders
via push encoders

Functions of buttons in ENCODER GROUPS

Top left Top right Bottom left Bottom right

1 1 .. 8 Button 57 Button 58 Button 59 Button 60

2 1 .. 16 Group 1 Group 2 Button 59 Button 60

3 1 .. 24 Group 1 Group 2 Group 3 Button 60

4 1 .. 32 Group 1 Group 2 Group 3 Group 4

As the above table shows, if only one push encoder group is available, no group swapping is needed and
all ‘ENCODER GROUPS’ buttons are available as independent buttons.

35

13.5 Function keys

BCL syntax: .fkeys FunctionKeys
FunctionKeys 0 {off, on}

Together with the Lock setting, FunctionKeys determines the function of the ‘function keys’, i.e. the BC
buttons labeled STORE, LEARN, EDIT and EXIT:

If FunctionKeys is on and Lock is off, these buttons indeed perform the STORE, LEARN, EDIT and
EXIT functions, and EDIT + STORE brings up Global Setup mode, etc.

If FunctionKeys is off or Lock is on, these buttons function as buttons 53-56, to which you can assign
MIDI output messages just as you can for the other buttons on the BC.

Note that if Lock is on, the value of FunctionKeys is irrelevant and the function keys always
function as buttons 53-56.

Note: the LEDs of the LEARN, EDIT and EXIT buttons remain lit indefinitely after a transition from
.fkeys off to .fkeys on if they happen to be lit at the moment of transition: even switching to
a different preset then doesn’t clear these LEDs! This problem is caused by a bug in the BC’s firmware
(in any case vs. 1.10).

36

13.6 Lock

BCL syntax: .lock Lock
Lock 0 {off, on}

This determines the function of the PRESET buttons (= and <):

If Lock is off, these buttons select the previous and next preset, respectively.

If Lock is on, these buttons function as buttons 63 and 64, to which you can assign MIDI output
messages just as you can for the other buttons on the BC.

Moreover, if Lock is on, the value of FunctionKeys is irrelevant and the ‘function keys’ function as
buttons 53-56.

37

13.7 LEARN output

LEARN output statement:
BCL syntax: .tx b1 [b2 ... bN]
Each argument bi must constitute a byte, defined decimally (0 .. 255) or hexadecimally ($00 .. $FF).

The BC itself always outputs a LEARN output statement using hexadecimal definitions. So e.g.
if you send the statement ‘.tx 240 247’ to the BC, a preset dump from the BC will return this as
‘.tx $F0 $F7’.

A preset’s LearnOutput is a sequence of zero or more LEARN output statements. The BC outputs the
sequence of bytes specified in these LEARN output statements as MIDI data in two situations:
1. Upon selection of the preset, provided that Request is on.
2. When the user executes a manual Data Request by pressing EDIT + LEARN. See §23.2.

At least one byte must be specified after .tx (in other words: b1 is obligatory), otherwise the BC replies
with error 3. This means that you can only undefine a previous LearnOutput by sending a $preset
section without any LEARN output statements. In accordance with this constraint, the BC itself never
sends bare LEARN output statements in preset dumps.

For each preset, the BC stores LearnOutput (the sequence of all LEARN output statements) in an internal
data buffer of 127 bytes. When the BC receives a LEARN output statement that overflows this internal
buffer, it replies with error 15.

Each .tx identifier takes up two bytes in the internal data buffer. Each byte bi takes up one byte,
except if it is $FE (Active Sensing), in which case it takes up two bytes. So if you define only one
LEARN output statement, that statement can at most define 125 bytes; if you define two LEARN output
statements, these statements may only define 123 bytes (divided in whatever way between the two
statements).

For economy’s sake it would be best to put all MIDI messages in a single LEARN output
statement. There are no ‘semantic’ restrictions to the MIDI bytes specified in a single LEARN output
statement: a single LEARN output statement may contain any number of MIDI messages (channel
messages, system exclusive messages, or whatever). However, the BC generates additional, spurious
MIDI output whenever a System Exclusive message ($F0 ... $F7) occurs in non-final position in a
LEARN output statement,4 so if you wish to avoid this, you should use multiple LEARN output
statements. For clarity it may be best to use a single LEARN output statement for every MIDI message.

Notes:

! In preset dumps from the BC (e.g. via EDIT + ‘PRESET <’) the BCL message containing a
LEARN output statement specifying exactly 125 MIDI bytes is incorrect. That is, the format of
such a BCL MIDI message itself is invalid, and Windows’ low-level MIDI input routine balks at
it. It seems that the BC uses a buffer of 512 bytes for sending BCL messages, which turns out to
be just too short for a .tx statement specifying 125 bytes (124 bytes is no problem). Note that the
BC does send the 125 bytes themselves (i.e. as MIDI data) correctly upon selection of the preset
and when you press EDIT + LEARN.

4 Actually I have only seen this spurious output when the BCF or BCR was in a U-mode (i.e. when it was connected to
the computer via USB), not in S-mode (i.e. via a standard MIDI connection). However, the apparent lack of spurious output in
S-mode may have been caused by the spurious data being ‘swallowed’ somewhere along the line. Alternatively, the BC’s USB
controller or driver may indeed be faulty, although I can’t see how this would affect only SysEx messages in a single output
statement.

38

! The B-Control-Tokenreferenz web page claims that the maximum number of definable MIDI bytes
is 123. (‘Die maximale Länge der übertragenen Daten scheint auf 123 Bytes begrenzt zu sein, ...’)
Now if we are talking about one SysEx message, the maximum number of MIDI data bytes is
indeed 123, since each SysEx message requires two obligatory MIDI status bytes: one initial $F0
and one final $F7. However, the bytes specified after .tx may constitute more than one message,
and these messages don’t have to be SysEx messages; so the B-Control-Tokenreferenz web page’s
claim is incorrect. (Moreover, as stated above, there can be more than one .tx statement!)

39

13.8 Initialization of all elements

BCL syntax: .init

This statement clears all the temporary preset’s elements. That is: all buttons, encoders and faders are
initialized.

In fact, the effect of a .init statement is identical to that of a sequence of empty element sections for
all the temporary preset’s elements. So a simple BCL block like

$rev F1
$preset
 .init
$end

has the same result as

$rev F1
$encoder 1
$encoder 2
etc.
$encoder 32
$button 1
$button 2
etc.
$button 64
$fader 1
$fader 2
etc.
$fader 9
$end

It is not obligatory to include .init in a preset section sent to the BC: if you leave .init out, any
temporary preset elements not included in the rest of the BCL chain simply remain at their current
settings.

However, the BC itself always includes .init in a preset dump, even if you have previously
omitted .init from a preset section you have sent to it! This is done for economy: a preset dump from
the BC always contains a complete definition of the temporary preset — the .init statement allows
the BC to achieve this completeness while leaving out any ‘empty’ elements.

Finally, note that .init changes the BC’s global variables Button, Encoder and Fader. See the section
on invalid element selector statements for discussion.

40

14 Control elements

The settings described in this section of this document are common to all BC elements (buttons, encoders
and faders).

41

14.1 Standard output

BCL syntax: .easypar StandardOutput

StandardOutput is a sequence of arguments. The first of these is Type, which determines the number and
nature of the rest of the arguments.

For any control element (button, encoder or fader) you can select one ‘standard’ output definition. This
usually causes the BC to output a single MIDI message whenever you physically manipulate (i.e. press,
turn or slide) the control element. Which types of standard output definition are available, depends on
the type of control element. For more complicated (‘custom’) output, the .tx statement must be used
instead.

Every .easypar statement has several side-effects:
! Default is set to a value that depends on the actual .easypar statement.
! CustomOutput is cleared.
Further side-effects are specific to specific element types (buttons, encoders and faders) and .easypar
statement types. These side-effects are described in the pertinent sections.

This is not the place for a complete discussion of the MIDI protocol. Many books and web documents
exist on this subject; even Behringer’s BC Manual has some useful things to say. However, the following
table specifies the general MIDI message types and the .easypar statement Type(s) generating them.
The Button and Encoder/Fader columns indicate whether a particular .easypar Type is available for
buttons and encoders/faders respectively.

MIDI message .easypar

Basic type Specific type Byte sequence Type Button Encoder/Fader

Channel

Note Off $8c Note Velocity ! ! !

Note On $9c Note Velocity NOTE ! !

Note Aftertouch $Ac Note Aftertouch AT ! !

Control Change $Bc Controller Value CC
NRPN
GS/XG

!
!
!

!
!
!

Program Change $Cc Program PC ! !

Channel Aftertouch $Dc Aftertouch AT ! !

Pitch Bend $Ec ValueLSB ValueMSB PB ! !

System

Exclusive $F0 ... $F7 MMC ! !

Common misc. ! ! !

Real-time misc. ! ! !

42

Notes:

! Every MIDI message starts with a status byte (in the range $80-$FF) and is followed by zero or
more data bytes (in the range $00-$7F), as dictated by the status byte. The only exception to this
rule is the System Exclusive message, which has a variable number of data bytes and must
therefore be terminated by the end-of-exclusive marker $F7.

! Every MIDI Channel Message specifies a channel c from $0 to $F as the lower nibble (four bits)
of the status byte. Beware: ‘external’ descriptions of this MIDI channel usually add 1 to c, leading
to a range of 1-16.

! If you study the precise definitions of the .easypar statement types (as specified in subsequent
sections of this document), you will see that for NOTE, AT, CC, PC and PB there is a more or less
one-to-one correspondence between the MIDI message type and the .easypar Type. (I say ‘more
or less’ because of certain small differences: for instance, PC allows you to not only set a program
number, but also MSB and LSB bank numbers.)

By contrast, the NRPN, GS/XG and MMC types correspond with small, rather esoteric subsets
of the MIDI message types to which they belong. (In fact, NRPN defines output that consists of
more than one MIDI message, and in many cases GS/XG does so too.)

! The MIDI Note Off message has no corresponding .easypar Type. This is in line with the
common practice of using a MIDI Note On message with Velocity 0 instead of a MIDI Note Off
message: MIDI Note Off Velocity is seldom relevant, and the use of MIDI Note On allows for a
shorter MIDI stream due to the use of the ‘Running Status’ protocol, which stipulates that a
Channel Message’s status byte does not have to be included in the stream if it is identical to the
previous message’s status byte.

! Both Note and Channel Aftertouch are represented by the AT Type. This is possible because the
additional Scope argument distinguishes between Note and Channel Aftertouch.

! The GS/XG Type merely offers ‘user-friendly’ shortcuts for the ‘Main Control’ parameters defined
in the Roland GS and Yamaha XG MIDI specifications. Depending on the actual GS/XG
parameter chosen, the resulting MIDI output follows either the CC or the NRPN scheme. See the
tables on the next page.

43

14.1.1 GS/XG Main Control parameters

.easypar Parameter Display GS/XG Parameter Type NRPN_MSB NRPN_LSB

cutoff CUTF Filter Cutoff Frequency

NRPN

$01 $20

resonance RESO Filter Resonance $01 $21

v-rate RATE Vibrato Rate $01 $08

v-depth DEPT Vibrato Depth $01 $09

v-delay DLY Vibrato Delay $01 $0A

eg-attack ATC EG Attack Time $01 $63

eg-decay DCY EG Decay Time $01 $64

eg-release RELS EG Release Time $01 $66

.easypar Parameter Display GS/XG Parameter Type CC_Controller

modulation MODU Modulation

CC

$01

p-time PORT Portamento Time $05

volume VOL Volume $07

panorama PAN Pan $0A

rev-send REVB Reverb Send $5B

crs-send CRS Chorus Send $5D

dly-send VARS Delay/Variation Send $5E

44

14.2 Show value

BCL syntax: .showvalue ShowValue
ShowValue 0 {off, on}

If ShowValue is on, manipulation of the element (button, encoder, fader) causes the BC’s display to
briefly show the element’s new value.

Note: the BC’s display contains 4 characters; if the value to be shown is 10000 or higher (up to the
absolute maximum of 16383), the most-significant digit (1) is not displayed; so e.g. 10000 is displayed
as ‘0000’.

Any .easypar statement sets the element’s ShowValue to off, so any .showvalue statement (or
at least .showvalue on) should occur after any .easypar statement.

45

14.3 Default value

BCL syntax: .default Default
To the BC: Default 0 {off, 0 .. 16383}
From the BC: Default 0 {0 .. 16383}

The Default setting provides initialization for the element’s Value, as described in the next section.
Default does not have to lie within any range defined by .easypar or minmax’s Value1 and Value2.

Note that Default can be changed in other ways as well:

1. Any element section selector statement ($button, $encoder or $fader) clears Default. So
it’s as if each section starts with an implicit .default off statement.

2. Any .easypar statement overwrites any previously set Default with an implicit value that is
deemed appropriate for that particular .easypar statement.

So in the following BCL section the .default statement is pointless, since the
.easypar statement immediately overwrites the value set by .default:

$encoder 1
 .default 10 ; this sets Default to 10
 .easypar 1 1 0 127 absolute ; this sets Default to 0

So any .default statement should occur after .easypar:

$encoder 1
 .easypar 1 1 0 127 absolute ; this sets Default to 0
 .default 10 ; this sets Default to 10

3. When the user manually stores a preset via the STORE button, the target memory preset’s Default
is set to the current Value setting of the active memory preset. (See the next section for more
information on Value.) Note that this does not occur when the BC receives the BCL $store
statement!

A special case is .default off. The B-Control-Tokenreferenz web page doesn’t mention this, but
it can indeed be sent to the BC. The BC itself never sends .default off in preset dumps: instead,
if no default has been defined, the BC simply sends no .default statement.

Since the section selector statement has already cleared Default (i.e. set it to off), .default
off is only meaningful to clear a value for Default set via a .default or .easypar statement in the
same section. For instance:

$encoder 1
 .easypar 1 1 0 127 absolute ; this sets Default to 0
 .default off

46

14.4 Current value

Value 0 {off, 0 .. 16383}

Every element in a memory preset has a Value setting. Value constitutes the element’s current value, i.e.
the element’s ‘core’ value, which is used in standard and custom MIDI output. Note that Value isn’t
stored in the memory preset as such: it is only maintained from the moment the BC is powered on until
it is powered off; after that, its value is lost.

A Value setting can be changed in the following ways:

1. When the BC gets powered on, Value is initialized to the element’s Default setting.

2. When the Default setting of an element in the temporary preset gets changed via any BCL
statement as described in the previous section (i.e. $button, $encoder, $fader, .easypar
or .default), the corresponding Value in the active memory preset is updated to this new
Default setting.

Note that Value is not reset to Default upon preset selection (via any of the methods
described in §19.3)! The BC only maintains Value for all the elements of the 32 memory presets,
not for the temporary preset. Upon preset selection, a memory preset’s settings are copied to the
temporary preset and the selected memory preset becomes the active memory preset, but the Value
settings of this memory preset don’t change! This feature allows you to use the 32 memory presets
as one virtual ‘super’-preset: you can switch among memory presets without ever destroying any
memory preset’s Value settings.

3. When the temporary preset is copied to a memory preset (via the $store statement or the manual
‘store preset’ function involving the STORE button), the target memory preset’s Value settings
are set to those of the old active memory preset, and then the target becomes the new active
memory preset.

So the target memory preset’s Value settings are not set to the temporary preset’s Default
settings! In fact, as already mentioned in the previous section, in the case of the manual ‘store
preset’ function (but not the $store statement), the target memory’s Default settings are set to
the Value settings!

4. When the user physically manipulates a button, encoder or fader, the corresponding Value in the
active memory preset is updated accordingly.

5. When the BC receives a MIDI message corresponding with the standard output (i.e. .easypar)
definition of an element in the active memory preset, that element’s Value is updated to the
received value. Note that this does not work for elements for which only custom output is defined.

If an element’s Value is off, the Snaphot Send function (see §23.4) doesn’t send any standard or custom
output for that element. Value can only become off as a result of Default being off, either directly
(methods 1 and 2 above) or indirectly (method 3 above).

47

14.5 Physical mapping

BCL syntax: .minmax Value1 Value2
Value1, Value2 0 {0 .. 16383}

This statement is primarily intended for setting the element’s mapping from physical position to Value
for custom output messages (as defined via .tx statements). However, it also affects any standard output
defined via a preceding .easypar statement, overriding any settings for Value1 and Value2 occurring
in that .easypar statement.

The way in which Value1 and Value2 are used, depends on the element type:

Button:
Value1 indicates Value’s first state, Value2 indicates Value’s second state. When a button changes
from the first to the second state and vice versa depends on the Mode setting. For instance, if Mode
is updown, Value1 is associated with the ‘up’ position, and Value2 with the ‘down’ position.

Encoder:
Value1 indicates the ultimate value that Value can take if you turn the knob in the counter-
clockwise direction, Value2 the ultimate value in the clockwise direction.

Fader:
Value1 indicates the value Value takes if you move the fader to its bottom position, Value2 the
value associated with the top position.

In principle Value1 does not have to be lower than Value2: any combination is legal, since Value1 and
Value2 merely determine the mapping from physical position to Value. (As Royce Craven has pointed
out to me, for a pair of inversely related parameters it can be handy to reverse the direction of one of the
elements.)

However, if you use the .mode incval statement for a button, Value1 does have to be lower
than Value2. See the discussion in §15.10.

Also note that Value1 and Value2 don’t prevent Value from being set to any value by ‘external’
means, i.e. initialization of the Default setting or (provided standard output has been defined for the
element) a corresponding incoming MIDI channel message.

48

14.6 Custom output

The definition of the custom MIDI output of elements (buttons, encoders en faders) basically follows the
same format as the LEARN output for a preset: for each element you can define a sequence of custom
output statements, each specifying a sequence of MIDI output bytes. All the syntactic constraints
specified for LEARN output in §13.7 apply to custom output as well. However, there is one difference:
whereas a LEARN output statement can only contain byte definitions, a custom output statement can also
contain ‘special’ identifiers. There are five types, which are described on the next pages. (See Royce
Craven’s BCSecrets.pdf document for a less formalistic approach, more directly aimed at concrete
problem-solving.)

Standard vs. custom output

Nearly(?) all standard output (.easypar) definitions could be programmed as custom output (.tx):
the custom output format is much wider. On the other hand, the BC interprets incoming parameter
feedback via MIDI only according to the element’s standard output definition; the BC does not use any
custom output definitions to synchronize the element’s current Value. In other words, custom output
definitions are ‘deaf’. So the best strategy is to only use a custom output definition if you can’t achieve
the same result via a standard output definition.

49

14.6.1 Data Specifier

The BC outputs the bytes specified in the custom output statement(s) as MIDI data whenever you change
the physical position of a control element. You order the BC to include the actual position or change of
position by including one or more data specifiers in the custom output statement(s). This causes the BC
to output Data, or rather (as we will see) portions of Data.

By default, Data is simply Value, i.e. the actual value (position) of the control element; however, after
a Change Definition in a custom output statement (as described under subsection B below), Data
indicates the relative change in the control element’s value.

Data has 14 bits. The BC can be ordered to transmit several different ‘sections’ of Data as a MIDI byte:

DataSpecifier Bits Transmitted MIDI byte

val 0 .. 6 Data and $007F

val0.6 0 .. 6 Data and $007F

val0 0 Data and $0001

val0.3 0 .. 3 Data and $000F

val4.7 4 .. 7 (Data and $00F0) shr 4

val8.11 8 .. 11 (Data and $0F00) shr 8

val12.13 12 .. 13 (Data and $3000) shr 12

val7.13 7 .. 13 (Data and $3F80) shr 7

val1.7 1 .. 7 (Data and $00FE) shr 1

Apart from val, these sections are clearly intended to be transmitted in combinations of subsequent
MIDI bytes that cover the whole Data, i.e. all its 14 bits. In fact, there are only three such combinations:

1. val7.13 & val0.6
Probably the most widely usable combination. This splits Data into 2 groups of 7 bits.

2. val12.13 & val8.11 & val4.7 & val0.3
Amounts to a segmentation into 4 groups of 4 bits (‘nibbles’), where bits 14 and 15 are zero.

3. val12.13 & val8.11 & val1.7 & val0
A rather curious segmentation. (I don’t know if any MIDI device requires this; alternatively,
val1.7 and val0 might be intended for together capturing an 8-bit Data.)

Note that val and val0.6 are semantically identical: they refer to bits 0 .. 6, i.e. the 7 lowest bits of
Data. You can use the one or the other in any context. However, the BC itself never sends val0.6, so
if you send val0.6 to the BC, it returns it as val. For clarity in your own definitions you would
normally use val if Data’s range (as defined via .minmax) lies in 0 .. 127, and val0.6 otherwise, i.e.
in contexts where you also use other sections of Data. It’s just that a combination of val7.13 & val
looks a bit confusing.

50

14.6.2 Change Definition

These definitions do not generate any MIDI output themselves, but turn the output for any further Data
Specifiers (val etc.) into measurements of relative change.

Three cases:

1. rel2s
Data = Change

In this case Data is simply Change, formatted as a standard two’s complement value.
Basically rel2s is the same as .easypar’s Mode argument relative-1.
Note that rel2s is equivalent to reloffs 0.

2. reloffs Offset
Offset 0 {0 .. 16383}
Data = Offset + Change

Basically reloffs is a generalized form of .easypar’s Mode argument relative-2.

3. relsign Offset
Offset 0 {0 .. 16383}
If Change > 0, then Data = Change
If Change < 0, then Data = Offset ! Change

Note that if Change is negative here, Data is greater than Offset (unless wrapping occurs, of
course, e.g. if Offset = 16383). So e.g. if Offset is $40 and Change is !1, then Data is $41. (So if
you define Offset as $00, the bizarre result is that there is no difference in output between turning
the knob to the left and turning it to the right!)
Basically relsign is a generalized form of .easypar’s Mode argument relative-3.

Offset can be sent to the BC in decimal or hexadecimal notation. The BC sends Offset in four-digit
hexadecimal notation ($hhhh), so e.g. reloffs 2 is returned as reloffs $0002.

The following example clarifies the various options:

$encoder 1
 .showvalue on
 .mode 1dot
 .resolution 96
 .default 0
 .minmax 0 127
 .tx $F0 $7D val rel2s val reloffs $40 val relsign $40 val $F7

(The extra spaces in the last line are simply meant to make the grouping a bit clearer. By the way, $7D
indicates the ‘non-commercial’ manufacturer; thus, any actual MIDI hardware device from a ‘real’
manufacturer that happens to receive this SysEx test message should simply ignore it.)

If you now turn push encoder 1 a bit in the clockwise direction, then back, the BC produces a sequence
of MIDI System Exclusive messages like this:

51

F0 7D 01 01 41 01 F7
F0 7D 02 01 41 01 F7
F0 7D 03 01 41 01 F7
F0 7D 02 7F 3F 41 F7
F0 7D 01 7F 3F 41 F7
F0 7D 00 7F 3F 41 F7

The first val in the .tx statement has produced the third byte of each SysEx message: this is simply
the actual knob value (as simultaneously shown by the BC in its display). The fourth, fifth and sixth bytes
are the relative values produced by rel2s, reloffs $40 and relsign $40 respectively; in each
of these cases the meaning of the output value (i.e. Change) is ‘+1’ for the first three messages and ‘!1’
for the last three messages — obviously the receiving MIDI device must be able to interpret these data
bytes correctly.

52

14.6.3 Checksum Definition

ChecksumDefinition = Method StartByteIndex
Method 0 {cks-1, cks-2, cks-3}
StartByteIndex 0 {0 .. 127}

At the position of ChecksumDefinition, the MIDI output from the BC generates one MIDI data byte (i.e.
in the range 0 .. 127) that represents the checksum of a sub-sequence of MIDI output bytes.

The first MIDI byte taken into account in the calculation of this checksum is the byte whose
position in the current custom output statement is indicated by StartByteIndex; the first MIDI byte
defined after the .tx identifier occupies position 0. The last MIDI byte taken into account is the byte
immediately before the Checksum Definition itself.

cks-1: The sum of all the MIDI output bytes and the checksum itself is a value of which bits 0 to
6 are zero. (Or, to say the same thing differently, the checksum is bits 0 to 6 of the negative
sum of the MIDI output bytes.)

The Roland company uses this method (in particular for RQ1 and DT1 messages).

cks-2: The checksum is bits 0 to 6 of the sum of all the MIDI output bytes.
The Waldorf company uses this method (e.g. for the MicroWave and Pulse).

cks-3: First, the byte at StartByteIndex and its successor are xor’ed; then, each following MIDI

output byte is xor’ed with the result of the previous xor.
*** Does anybody know a manufacturer/device that uses this protocol? ***

Like the MIDI bytes of a .tx statement, StartByteIndex can be sent to the BC in decimal or hexadecimal
notation. The BC sends StartByteIndex in decimal notation. (So StartByteIndex is the only decimal
argument in a .tx statement sent by the BC: any MIDI bytes and arguments to Change Definitions are
sent as hexadecimals!)

As Royce Craven discovered, the BC erroneously doesn’t send back the Method identifier;
obviously this completely ruins the intended definition.5

Note that the BC doesn’t balk at any StartByteIndex that refers to a forward byte, or indeed a position
beyond the end of the actual message. (In fact, since any custom output statement can only define 125
bytes at best, a value for StartByteIndex in the range of 125 .. 127 always refers to a non-existent
position.) I haven’t checked the actual MIDI output in any of these anomalous cases.

One custom output statement can contain more than one Checksum Definition, so in theory you can
include multiple SysEx messages. However, this is highly unadvisable, because every SysEx message
in non-final position leads to spurious, additional output from the BC. Instead, you should define a
sequence of two separate but identical custom output statements:

.tx $F0 $7D $01 cks-2 2 $F7

.tx $F0 $7D $01 cks-2 2 $F7

This yields the intended MIDI output from the BC:

5 Actually the BC does return the space character that is always sent before any identifier occurring after another
identifier. So for instance ‘.tx $F0 $7D $01 cks-1 2 $F7’ comes back as ‘.tx $F0 $7D $01 2 $F7’, i.e. with
two spaces between $01 and 2, the first space being ‘in front of’ the phantom Method identifier, the second one in front of 2.

53

F0 7D 01 01 F7
F0 7D 01 01 F7

Apart from the problem of spurious output, it could be tricky anyway to include multiple SysEx messages
in one custom output statement, because StartByteIndex counts from the start of the custom output
statement in which it occurs, not from the $F0 byte after which it occurs. This means that you can’t
simply duplicate a particular StartByteIndex-containing SysEx definition in one custom output statement.

Consider the following statement:

.tx $F0 $7D $01 cks-2 2 $F7 $F0 $7D $01 cks-2 2 $F7

This statement contains two identical definitions for SysEx messages, but the BC’s MIDI output resulting
from this statement includes different checksum bytes, because the second StartByteIndex value of 2
refers to the byte with the index of 2 in the whole statement, which is the third byte of the first SysEx
message. Consequently, in calculating the second checksum, the BC sums the bytes with indexes 2 to 7
($01 + $01 + $F7 + $F0 + $7D + $01 = $267), instead of using only the byte at index 7. So the output
from the BC is:

F0 7D 01 01 F7
01 F7 (spurious)
F0 7D 01 67 F7 (unintended checksum)

To correct the checksum of the second SysEx message, you would have to change the second
StartByteIndex to 7:

.tx $F0 $7D $01 cks-2 2 $F7 $F0 $7D $01 cks-2 7 $F7

This would produce:

F0 7D 01 01 F7
01 F7 (spurious)
F0 7D 01 01 F7

The second checksum is as intended here. However, even here the BC generates spurious output between
the two SysEx messages.

54

14.6.4 Direction Specifier

DirectionSpecifier 0 {ifp, ifn}

Any definitions (MIDI bytes or special identifiers) after ifp only lead to MIDI output when Change is
positive. Any definitions after ifn only leads to MIDI output when Change is negative.

It is possible to have any number of Direction identifiers in the same custom output statement. Normally
you have only one ifp and one ifn, but multiple occurrences are accepted too. E.g. .tx ifp $C0
$01 ifn $C0 $02 ifp $C0 $03 ifn $C0 $04 leads to C0 01 C0 03 for positive changes
and to C0 02 C0 04 for negative changes.

Note that the problem concerning System Exclusive messages mentioned under ‘Checksum Definition’
applies to direction specifiers as well: the rule seems to be that a System Exclusive message in an ifp
or ifn clause produces spurious output if more bytes are output afterwards. Note the precise definition
of this rule: for instance, if a System Exclusive message occurs in an ifp clause, any output byte
definitions in subsequent ifn clauses are allowed (since these don’t produce any output if the direction
is positive), but any output byte definition in the same or any subsequent ifp clause leads to spurious
output.

For instance:

$encoder 1
 .showvalue on
 .mode 1dot
 .resolution 100
 .minmax 0 100
 .tx $C0 $01 ifp $C1 $01 $F0 $7D $F7 $C2 $01

In case of a positive change, the MIDI output is C0 01 C1 01 F0 7D F7 F0 7D F7 C2 01: i.e.
the SysEx message is repeated!

55

14.6.5 Repeat

Repeat = ntimes

The MIDI output resulting from any definitions (MIDI bytes or special identifiers) after ntimes is
repeated a number of times, based on the amount of change. This makes it possible to send the change
in the control element’s value as a series of identical messages, instead of the ‘normal’ single message
specifying the actual (‘absolute’) new value (Value) or the relative change (Change). Typically you
would only use this if the receiving device cannot handle absolute values or amounts of change.

It is syntactically valid to include multiple instances of ntimes on the same line, but only the last
instance works: any previous ones are simply ignored.

The following example should clarify how ntimes actually works:

$encoder 1
 .showvalue on
 .mode 1dot
 .resolution 200
 .minmax 0 127
 .tx $B0 $00 val rel2s $B0 $01 val ntimes $B0 $02 $00

This yields output like the following sequence:

B0 00 01 (new absolute value)
B0 01 01 (change of +1 via rel2s)
B0 02 00 (the ntimes clause "fires" once, in line with the change)

B0 00 03 (new absolute value)
B0 01 02 (change of +2 via rel2s)
B0 02 00 (ntimes fires once)
B0 02 00 (ntimes fires once more, to match the change of +2)

B0 00 06 (new absolute value)
B0 01 03 (change of +3 via rel2s)
B0 02 00 (ntimes fires once)
B0 02 00 (ntimes fires once more)
B0 02 00 (ntimes fires once more, to match the change of +3)

So in this example the ntimes clause is output exactly as many times as the size of the change indicated
via rel2s.

Notes:
! ntimes always applies, even if it occurs after ifp or ifn. Consider the pattern ‘ifp ntimes

A ifn B’: the BC of course repeats A (e.g. a sequence of byte values) upon a positive change,
but it also repeats B upon a negative change, even though ntimes itself appears to lie within the
ifp clause.

! Checksum definitions (cks-1, cks-2, cks-3) occurring after ntimes calculate their
checksums only once; so the checksum is the same in each repeat.

56

14.6.6 Length of custom MIDI output definitions

The BC’s internal data buffer for a control element’s custom output statement(s) contains 127 bytes. The
various constituents take up the following number of bytes:

Constituent Bytes

.tx (i.e. the statement identifier itself) 2

MIDI byte $00 .. $FD, $FF 1

MIDI byte $FE (Active Sensing) 2

Special identifier (val, reloffs, cks-1 etc.) 2

Offset (the 14-bit argument to reloffs and relsign) 2

StartByteIndex (the 7-bit Checksum Definition argument) 1

So e.g.:
! If a custom output statement contains one val, you have only 123 bytes available for other MIDI

bytes, special identifiers and arguments, because the .tx identifier itself takes two bytes and the
val another two.

! ‘reloffs $0040’ takes up four bytes: two for reloffs, two for $0040.
! ‘cks-1 6’ takes up three bytes: two for cks-1, one for 6.

57

14.7 Local

BCL syntax: .local Local
Local 0 {off, on}

A .local statement is legal (i.e. accepted by the BCF and BCR) in $button and $encoder sections
(but not under $fader). Its function is unknown. The BC never includes it when it sends a preset dump,
so maybe it's not actually stored in the button or encoder.

One might think that .local off prevents the BC from sending MIDI messages when a
particular button or encoder is being moved (similar to the EXIT button’s local-off procedure described
in section 4.6 of the B-Control manual). However, this appears not to be the case. So...? ***

It also seems that neither .local off nor .local on blocks parameter feedback from the
computer to the BC.

58

14.8 Standard vs. custom MIDI output

Contrary to what the B-Control-Tokenreferenz web page claims, the BC can output a control element’s
standard MIDI output and its custom MIDI output together. All you have to do is include .easypar
and .minmax/.tx in the same BCL section for that control element’s definition, where .easypar
must occur before .minmax and .tx. (The order of .minmax versus .tx doesn’t matter.)

So for example:

$encoder 1
 .easypar CC 1 1 0 127 absolute
 .showvalue on
 .mode 1dot
 .resolution 96 96 96 96
 .default 0
 .minmax 127 0
 .tx $F0 $7D val cks-1 1 $F7

An element definition like this has 2 effects:

1. When the BC sends a preset dump (which occurs for instance when you press EDIT +
‘PRESET <’), only the .easypar definition is included, not the .tx/.minmax definitions. (In
other words, the BC is buggy in this respect!)

2. Whenever you physically move the control element, the BC first sends the standard MIDI output
(as defined via .easypar), then the custom MIDI output (as defined via .tx).

Obviously, the standard output and the custom output always use the same control value (or
change). In fact, this value is determined exclusively by the .minmax arguments Value1 and
Value2): .easypar’s Value1 and Value2 parameters are completely irrelevant, even though they
are misleadingly included in the preset dump!

So in the example above, the .minmax statement causes reverse direction, as demonstrated
via the encoder’s dot, the BC’s display, the CC message and the SysEx message alike.

In fact, if you leave out the .tx line from the above BCL script, .minmax still affects the control
element’s behavior and the MIDI message(s) defined via .easypar, although the .minmax
definition is of course still not sent back in preset dumps.

So if you send

$button 52
 .easypar CC 1 1 0 10 toggleon
 .minmax 20 30

to the BC, a preset dump back from the BC returns this as

$button 52
 .easypar CC 1 1 0 10 toggleon

but pressing the button itself repeatedly causes the BC to output a sequence of 30, 20, 30, 20, ...!
This is very curious behavior.6

6 I also think that the value for Default was set to .minmax’s Value2 (so 30 in the example) when I stored this to a
memory preset, then recalled that memory preset, but I haven’t examined this phenomenon any further.

59

14.9 Value synchronization

If two or more elements (buttons, encoders or faders) refer to the same ‘MIDI entity’ (Channel and
Controller, NRPN, Scope etc.), their behavior is affected by a special feature of the BC: the BC
synchronizes the Value of all elements which refer to the same MIDI entity. That is: when you physically
move one element and thereby change its Value, the Value of any other element referring to the same
MIDI entity is updated to the moving element’s Value.

Notes:
! Value synchronization only applies to elements having standard output (defined via .easypar),

not to elements having only custom output (defined via .tx statements).
! Value synchronization works for any combination of elements. That is: you can mix buttons,

encoders and faders.
! Different elements referring to the same MIDI entity can actually have different values for Default

(although it’s probably unwise to define them this way), but once you have moved one of them,
their Value settings remain synchronized.

Value synchronization feature is useful in various circumstances. On the following pages some
possibilities are discussed.

60

14.9.1 Button increment mode

As described in §15.10, the increment mode causes a button to step through its value range (from
Value2 to Value1). But how do you go backwards in the same range? If the range is very small (up to
— say — five values),7 it may be feasible to simply keep pressing the button until the value wraps back.
However, if the range is larger, this is impractical. What you then need is a second button, one that steps
through the range in the opposite direction. Thus, you get a pair of buttons, where one has a positive
increment and the other a negative increment. The following pair of button definitions exemplifies this
setup for the Main Volume controller (CC#7):

$button 49
 .easypar CC 1 7 127 0 increment 1
 .showvalue on
 .default 64
$button 51
 .easypar CC 1 7 127 0 increment -1
 .showvalue on
 .default 64

Note that button combinations like this are only viable because the BC applies value synchronization:
if you press one button (thereby changing its Value), the Value of the other button is updated to the
pressed button’s Value. So if you press button 49 in the above example, the Value of both buttons
becomes 65. Then, if you press button 51, the Value of both buttons becomes 64 (if the BC didn’t apply
value synchronization, the output value would be 63 at this point).

It is also possible to combine buttons with different increments in this way. This can give you great
flexibility. For instance:

$button 49
 .easypar CC 1 7 100 0 increment 1
 .showvalue on
 .default 50
$button 50
 .easypar CC 1 7 100 0 increment 10
 .showvalue on
 .default 50
$button 51
 .easypar CC 1 7 100 0 increment -1
 .showvalue on
 .default 50
$button 52
 .easypar CC 1 7 100 0 increment -10
 .showvalue on
 .default 50

7 As Royce Craven has pointed out to me, this is often the case with program banks.

61

14.9.2 Encoder resolutions

You can have one encoder provide ‘coarse’ editing and another ‘fine’ editing. For instance:

$encoder 1 ; coarse
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .mode bar
 .resolution 100
 .default 50
$encoder 2 ; fine
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .mode bar
 .resolution 10
 .default 50

62

14.9.3 Frankenstein faders (a.k.a. fader calibration test)

For the BCF’s faders it’s a bit harder to come up with any really useful application of value
synchronization, but you can try the setup below for the ultimate spooky effect. It’s also somewhat useful
for checking whether your faders and their motors are calibrated.

$fader 1
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 2
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 3
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 4
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 5
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 6
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 7
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50
$fader 8
 .easypar CC 1 7 0 100 absolute
 .showvalue on
 .motor on
 .default 50

You should also try this in combination with the button and encoder examples mentioned above! It’s also
fun to set the eight faders to different ranges, e.g. 0-30, 10-40, 20-50, etc.

63

15 Buttons

A button section in a BCL block is introduced by a button selector statement:

BCL syntax: $button Button
Button 0 {1 .. 64}

Button Group/Row Activity condition

1 .. 8 Push Encoders (Group 1)

9 .. 16 Push Encoders (Group 2) EncoderGroups $ 2

17 .. 24 Push Encoders (Group 3) EncoderGroups $ 3

25 .. 32 Push Encoders (Group 4) EncoderGroups = 4

33 .. 40 Keys (Upper Row)

41 .. 48 Keys (Lower Row)

49 .. 52 User Keys (i.e. at bottom right of BC)

53 .. 56 Function Keys (STORE etc.) FunctionKeys = off

57 .. 60 ENCODER GROUPS see §13.4

61 BCF2000: Foot Switch
BCR2000: Foot Switch 1

62 BCR2000: Foot Switch 2 Device is BCR2000

63 .. 64 PRESET (= and <) Lock = on

If the pertinent activity condition is not met, the button (or foot switch) doesn’t react when you press it:
no new value is shown in the BC’s display, and no MIDI data is sent.

However, the BC maintains (i.e. accepts and returns) any button’s BCL definition at all times, even
when its activity condition is not being met. (The BCF2000 even maintains ‘button’ 62, although the
BCF2000 doesn’t even have Foot Switch 2!)

64

A button selector statement sets all the selected button’s settings to the following values:

Setting Value

StandardOutput cleared

ShowValue off

Default off

Mode down

Value1 0

Value2 0

CustomOutput cleared

Local unknown (probably off)

A button section sent by a BC contains a subset of the following dot statements (in this order); individual
statements are only sent in certain situations, as indicated:

Statement Situation

.easypar StandardOutput StandardOutput is defined

.showvalue ShowValue always

.default Default Default � off

.mode Mode StandardOutput is not defined

.minmax Value1 Value2 StandardOutput is not defined

.tx CustomOutput both these conditions are met:
! StandardOutput is not defined
! CustomOutput is defined

Note: the BC never sends any .local statement.

Details on these dot statements follow on the next pages.

65

15.1 Standard output

The Type argument of a .easypar statement for a button must be one of the following identifiers:

PC
CC
NRPN
NOTE
AT
MMC
GS/XG

The individual cases are described on the following pages.

A .easypar statement in a button section has the following side-effects:

Setting Value

ShowValue off

Default

depends on actual .easypar statement
Mode

Value1

Value2

CustomOutput cleared

Local unknown

‘Side-effect’ here means that these settings aren’t included as arguments in the .easypar statement
itself, but are changed by the BC ‘behind your back’. However, many .easypar statements do have
Mode, Value1 and Value2 as arguments, so strictly speaking their new values are then ‘main’ effects,
rather than ‘side’ effects.

66

15.2 Program Change

BCL syntax: .easypar PC Channel BankMSB BankLSB Program

Side-effects:
If Program = off: Default, Value1 and Value2 become 0
If Program � off: Default, Value1 and Value2 become Program
Mode becomes down

MIDI output:
1. If BankMSB � off: $Bc $00 BankMSB
2. If BankLSB � off: $Bc $20 BankLSB
3. If Program � off: $Cc Program

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
BankMSB, BankLSB, Program 0 {off, 0 .. 127}

67

15.3 Control Change

BCL syntax:

If Mode 0 {toggleoff, toggleon}:
.easypar CC Channel Controller Value1 Value2 Mode

If Mode = increment:
.easypar CC Channel Controller Value1 Value2 Mode Increment

Side-effects:
If Value2 is off, Default becomes 0, else Default becomes Value2

MIDI output:

If Mode = toggleoff:
On: $Bc Controller Value1_LSB
Off: if Value2 � off: $Bc Controller Value2_LSB

If Mode = toggleon:
On: $Bc Controller Value1_LSB
Off: $Bc Controller Value2_LSB

If Mode = increment:
$Bc Controller ValueLSB

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Controller 0 {0 .. 127}
Value1 0 {0 .. 16383}
Value2 0 {off, 0 .. 16383}

(if Mode is toggleon, the BC converts a received off to 0; if Mode is increment, off is
retained but acts as 0 in the MIDI output algorithm)

Mode 0 {toggleoff, toggleon, increment}
Increment 0 {!127 .. !1, 1 .. 127} (0 is not allowed: causes BCL error 11)
Value1_LSB = Value1 and $7F
Value2_LSB = Value2 and $7F
ValueLSB = Value and $7F
Value: see §15.10

The 14-bit range (0 .. 16383) of Value1 and Value2 is anomalous, since MIDI Control Change messages
can only send values in the range of 0 .. 127:
! The BC accepts any received 14-bit value: the BCL reply message reports ‘no error’.
! In preset dumps, the BC retains any received 14-bit value, and Default (i.e. the argument to the

.default statement) is set to Value2 unconditionally, i.e. even if Value2 is higher than 127.
! If you edit Value1 or Value2 on the BC itself (by pressing the EDIT button, then manipulating

push encoder 4 or 5 respectively), the BC displays any existing 14-bit value. However, you are not

68

allowed to raise the parameter to a value above 127; so for instance you can lower 10000 to 9999,
but when you try to raise 10000 to 10001, the display jumps to 127.

! The algorithm for calculating Value (see §15.10) uses the full Value1 and Value2 (not just their
lowest 7 bits, i.e. Value1_LSB and Value2_LSB).

! In actual MIDI Control Change messages the BC sends the value’s lowest 7 bits.

69

15.4 NRPN (Non-Registered Parameter Number)

BCL syntax:

If Mode 0 {toggleoff, toggleon}:
.easypar NRPN Channel NRPN Value1 Value2 Mode

If Mode = increment:
.easypar NRPN Channel NRPN Value1 Value2 Mode Increment

Side-effects:
If Value2 is off, Default becomes 0, else Default becomes Value2

MIDI output:

If Mode = toggleoff:
On:

1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. $Bc $06 Value1_LSB

Off: if Value2 � off:
1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. $Bc $06 Value2_LSB

If Mode = toggleon:
On:

1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. $Bc $06 Value1_LSB

Off:
1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. $Bc $06 Value2_LSB

If Mode = increment:
1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. $Bc $06 ValueLSB

One might think that the BC could use the 14-bit range of Value1 and Value2 to send 14-bit NRPN data,
but unfortunately this is not the case: the BC only sends NRPN data entry MSB messages (never data
entry LSB messages), with Value1 or Value2’s lowest 7 bits.

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
NRPN, Value1 0 {0 .. 16383}
Value2 0 {off, 0 .. 16383}

70

(if Mode is toggleon, the BC converts a received off to 0; if Mode is increment, off is
retained but acts as 0 in the MIDI output algorithm)

NRPN_MSB = NRPN shr 7 (i.e. the 7 highest bits of NRPN)
NRPN_LSB = NRPN and $7F (i.e. the 7 lowest bits of NRPN)
Value1_LSB = Value1 and $7F
Value2_LSB = Value2 and $7F
Mode 0 {toggleoff, toggleon, increment}
Increment 0 {!127 .. !1, 1 .. 127} (0 is not allowed: causes BCL error 11)
ValueLSB = Value and $7F
Value: see §15.10

As for .easypar CC, the 14-bit range of Value1 and Value2 is anomalous.

71

15.5 Note

BCL syntax: .easypar NOTE Channel Note Velocity Mode

Side-effects:
Default becomes 0
Value1 becomes 0
Value2 becomes Velocity

MIDI output:

On: $9c Note Velocity
Off: $9c Note 0

In any co-occurring custom output messages (as defined via .tx statements), Value (cf. val etc. in the
.tx statement) is set to Velocity (not to Note!) for the ‘On’ event, and to 0 for the ‘Off’ event.

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Note 0 {0 .. 127}
To the BC: Velocity 0 {0 .. 127}
From the BC: Velocity 0 {1 .. 127}
Mode 0 {toggleoff, toggleon}

Velocity can be 0 when sent to the BC, but the BC converts this to 1. (In fact, you can even enter 0 via
the manual edit mode on the BC, but this value is converted to 1 too as soon as you leave edit mode!)

72

15.6 Aftertouch

BCL syntax:

If Mode 0 {toggleoff, toggleon}:
.easypar AT Channel Scope Value1 Value2 Mode

If Mode = increment:
.easypar AT Channel Scope Value1 Value2 Mode Increment

Side-effects:
If Value2 is off, Default becomes 0, else Default becomes Value2

MIDI output:

If Mode = toggleoff:
If Scope = all:

On: $Dc Value1
Off: if Value2 �off: $Dc Value2
(These are Channel Aftertouch messages.)

If Scope 0 {0 .. 127}:
On: $Ac Scope Value1
Off: if Value2 �off: $Ac Scope Value2
(These are Note Aftertouch messages.)

If Mode = toggleon:
If Scope = all:

On: $Dc Value1
Off: $Dc Value2
(These are Channel Aftertouch messages.)

If Scope 0 {0 .. 127}:
On: $Ac Scope Value1
Off: $Ac Scope Value2
(These are Note Aftertouch messages.)

If Mode = increment:
If Scope = all:

On: $Dc Value
(This is a Channel Aftertouch message.)

If Scope 0 {0 .. 127}:
On: $Ac Scope Value

(This is a Note Aftertouch message.)

Definitions:

Channel 0 {1 .. 16}
c = Channel !1
Scope 0 {all, 0 .. 127}

73

Value1 0 {0 .. 127}
Value2 0 {off, 0 .. 127}

(if Mode is toggleon, the BC converts a received off to 0; if Mode is increment, off is
retained but acts as 0 in the MIDI output algorithm)

Mode 0 {toggleoff, toggleon, increment}
Increment 0 {!127 .. !1, 1 .. 127} (0 is not allowed: causes BCL error 11)
Value: see §15.10

74

15.7 MMC (MIDI Machine Control)

BCL syntax: .easypar MMC Device Command Location FrameRate

Side-effects:
! Default becomes a value associated with FrameRate, i.e. 0, 24, 25, 30 and 30 for noloc, 24f,

25f, 30df and 30f respectively. (I have no idea what the point of this is, but never mind.)
! Mode becomes down
! Value1 and Value2 become 60 × H + M

MIDI output:

1. If FrameRate � noloc:
$F0 $7F DeviceByte $06 $44 $06 $01 FrameRate_H M S F $00 $F7
This is a ‘locate’ message (cf. $06 $01). (*** But what does $06 $44 mean here? ***)

2. If Command � locate:
$F0 $7F DeviceByte $06 CommandByte $F7

As the above definitions imply, there is no MIDI output if Command = locate and FrameRate =
noloc.

In any co-occurring custom output messages (as defined via .tx statements), Value (cf. val etc. in the
.tx statement) is set to 60 × H + M.

Definitions:

Device 0 {all, 0 .. 126}
Device = all: DeviceByte = $7F
Device 0 {0 .. 126}: DeviceByte = Device

Command 0 {play, pause, stop, fwd, rew, locate, punch-in, punch-out}

75

Command CommandByte

play $02

pause $09

stop $01

fwd $04

rew $05

locate $01 (N/A)

punch-in $06

punch-out $07

Location:
FrameRate = noloc:

Location is not used, but it is still syntactically required as an argument. You can send it to
the BC as any sequence of characters except spaces and semicolons; the BC always sends
00:00:00.00 in preset dumps.

FrameRate � noloc:
Location = H:M:S.F
H 0 {0 .. 23}
M, S 0 {0 .. 59}
F 0 {0 .. f !1}, where f is the actual frame rate (i.e. 24, 25 or 30, cf. FrameRate)
H, M, S and F must each be written as exactly 2 digits (i.e. if necessary with a leading zero)

FrameRate 0 {noloc, 24f, 25f, 30df, 30f}

FrameRate FrameRateBits Frames per second Standard usage8

noloc N/A

24f $00 24 Film

25f $20 25 TV: PAL

30df $40 29.97 TV: NTSC (‘drop frame’)

30f $60 30 Inaccurate simplification of NTSC

FrameRate_H = FrameRateBits or H

8 Royce Craven provided the info in this column.

76

15.8 GS/XG

BCL syntax: .easypar GS/XG Channel Parameter Value1 Value2 Mode

Side-effects:
If Value2 is off, Default becomes 0, else Default becomes Value2

MIDI output:

If Mode = toggleoff:
If Parameter’s type is NRPN:

On:
1. $Bc $62 NRPN_MSB
2. $Bc $63 NRPN_LSB
3. $Bc $06 Value1

Off: if Value2 �off:
1. $Bc $62 NRPN_MSB
2. $Bc $63 NRPN_LSB
3. $Bc $06 Value2

If Parameter’s type is CC:
On: $Bc CC_Controller Value1
Off: if Value2 �off: $Bc CC_Controller Value2

If Mode = toggleon:
If Parameter’s type is NRPN:

On:
1. $Bc $62 NRPN_MSB
2. $Bc $63 NRPN_LSB
3. $Bc $06 Value1

Off:
1. $Bc $62 NRPN_MSB
2. $Bc $63 NRPN_LSB
3. $Bc $06 Value2

If Parameter’s type is CC:
On: $Bc CC_Controller Value1
Off: $Bc CC_Controller Value2

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Parameter, NRPN_MSB, NRPN_LSB and CC_Controller: see the tables in §14.1.1
Value1 0 {0 .. 127}
Value2 0 {off, 0 .. 127} (if Mode is toggleon, the BC converts a received off to 0)
Mode 0 {toggleoff, toggleon}

77

15.9 Mode

BCL syntax:

If Mode 0 {down, updown, toggle}:
.mode Mode

If Mode = incval:
.mode incval Increment
Where Increment 0 {!127..!1, 1..127}.
Beware: the BC incorrectly returns the incval mode as down.

The .mode statement is primarily intended to be used in conjunction with .tx statements, i.e. for
custom output. However, a button has only one Mode setting; that is: any .mode statement also affects
any standard output defined via a previous .easypar statement.

All in all there are three BCL statement types that affect Mode:
! $button Button (this sets Mode to down)
! .easypar Type ... Mode
! .mode Mode

Obviously, the most recent occurrence of these BCL statement types determines the current value of
Mode. So if .easypar has come last, its Type and Mode arguments are the decisive factors; if a .mode
statement has come last, its Mode argument decides.

The Mode setting affects the button’s behavior as follows:

Provided that ShowValue is on, the BC’s display briefly shows the following values at the moments
when you push and release the button sequentially:

.easypar Type PC, MMC CC, NRPN, NOTE*, AT, GS/XG*

Mode ! toggleoff toggleon increment Increment

.mode Mode down updown toggle incval Increment

Push 1st time on on on Default + Increment

Release 1st time oFF oFF on !

Push 2nd time on on oFF Default + 2×Increment

Release 2nd time oFF oFF oFF !

* Actually, NOTE and GS/XG cannot use increment.

However, the protocols for down and toggleon/toggle specify that the BC doesn’t actually send
the MIDI message(s) associated with the flashed value when you release the button. So if A stands for
the actual MIDI message(s) associated with the button’s on state, and B for the one(s) associated with
the oFF state, we find the following MIDI output pattern:

78

.easypar Type PC, MMC CC, NRPN, NOTE*, AT, GS/XG*

Mode ! toggleoff toggleon increment Increment

.mode Mode down updown toggle incval Increment

Push 1st time A A A Default + Increment

Release 1st time ! B ! !

Push 2nd time A A B Default + 2×Increment

Release 2nd time ! B ! !

Note that it is legal to send .easypar and .mode statements to the BC in the same $button section.
For instance:

$button 33
 .easypar CC 1 1 127 0 Mode1 1
 .showvalue on
 .mode Mode2

However, this construct is inadvisable, because Mode2 in the .mode statement overwrites Mode1 set by
the .easypar statement. This can mess up the button’s behavior:

As the above tables shows, .easypar’s toggleoff and .mode’s updown cause identical
behavior, and so do toggleon and toggle, and increment and incval. So it would be safe to
follow the .easypar version by the .mode version in these cases (but why would you?). However,
certain other combinations may cause the button to behave rather strangely. For instance, putting ‘.mode
down’ after CC, NRPN, NOTE, AT or GS/XG causes the BC to only output the button’s down message
(A), never the up message (B); note that you can achieve the same result by using toggleon/toggle
and setting Value1 (hence A) to the same value as Value2 (hence B). Flatly disastrous is what happens
to .easypar’s increment mode if you include any subsequent .mode statement other than .mode
incval: the button then no longer functions incrementally!

And as if things weren’t confusing enough: when the BC sends a ‘double-mode’ definition back
to the computer (via a subsequent preset dump), the original Mode argument of .easypar is retained,
but the .mode statement is not included. In fact, the BC never outputs a .mode statement for a button
that uses .easypar.

79

15.10 Increment mode

A button responds incrementally if the Mode argument of .easypar CC, NRPN or AT is increment
or if the Mode argument of .mode is incval. In either case, the Increment argument determines the
jump size for each successive time the button is pressed.

For .easypar, the following algorithm is used to calculate the sequence of values which the BC
outputs in MIDI messages. (Actually, for .easypar CC and NRPN the BC only outputs the least
significant 7 bits; for AT Value is only 7 bits anyway.)

! Before the button is pressed for the first time, Value is Default. (Obviously this value is not
output!)

! Each time the button is pressed, the intermediate variable N is calculated as Value + Increment.
(Remember that Increment can be negative, so in that case N is lower than Value.)
Then:
! If Increment > 0: if N is higher than Value1, Value is set to Value2, otherwise to N.
! If Increment < 0: if N is lower than Value2, Value is set to Value1, otherwise to N.
Finally, the new Value is incorporated in the appropriate MIDI message(s), and shown in the BC’s
display if ShowValue is on.

Several aspects of this algorithm are worth highlighting:

! Value1 must always be higher than Value2, otherwise Value will immediately stick at Value1 if
Increment is negative, and at Value2 if Increment is positive. This occurs irrespective of the value
of Default.

! The algorithm produces cyclical output: after reaching one end of the range, Value wraps around
to the other end.

! Remember that a .easypar statement sets Default and Value to Value2. Therefore, if there is
no .default statement after the .easypar statement, the following behavior occurs:

! If Increment > 0, the first value sent is Value2 + Increment.
! If Increment < 0, the first value sent is Value1. (This is because Value2 + Increment is lower

than Value2, so wrapping takes place.)

For example:
.easypar CC 1 1 10 1 increment 2 , 3, 5, 7, 9, 1, 3, ...
.easypar CC 1 1 10 1 increment !2 , 10, 8, 6, 4, 2, 10, 8, ...

So in this situation there is effectively a mismatch between the output for a positive and for a
negative Increment: Value2 is initially skipped if Increment is positive, but Value1 is not skipped
if Increment is negative.

See the ‘Value synchronization’ section in §14.9 for examples of multiple increment buttons referring
to the same ‘MIDI entity’.

The algorithm above applies in almost the same way for a custom output definition, i.e. one using .mode
incval, .minmax and .tx instead of .easypar. The one crucial difference is that in terms of the
above algorithm, the Value1 and Value2 arguments of .minmax are to be swapped; so whenever the

80

above algorithm talks about Value1, this actually refers to .minmax’s Value2, and vice versa.
Consequently .minmax’s Value1 must be smaller than Value2, etc.

So for instance the custom output versions of the .easypar examples discussed above are:

.mode incval 2

.minmax 1 10

.tx $B0 0 val

and

.mode incval -2

.minmax 1 10

.tx $B0 0 val

Note that in both cases .minmax’s Value1 contains the minimum and Value2 the maximum.

81

16 Continuous elements (encoders/faders)

16.1 Standard output

The Type argument of a .easypar statement for an encoder or fader must be one of the following
identifiers:

PC
CC
NRPN
PB
AT
GS/XG

The individual cases are described on the following pages.

Note that a fader whose Motor setting is off does not physically reflect any of the changes to Default
specified under ‘side-effects’.

82

16.2 Program Change

BCL syntax: .easypar PC Channel BankMSB BankLSB

Side-effects:
Default becomes 0
Value1 becomes 0
Value2 becomes 127

MIDI output:
1. If BankMSB � off: $Bc $00 BankMSB
2. If BankLSB � off: $Bc $20 BankLSB
3. $Cc Value

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
BankMSB, BankLSB 0 {off, 0 .. 127}
Value 0 {0 .. 127}

83

16.3 Control Change

BCL syntax: .easypar CC Channel Controller Value1 Value2 Mode

Side-effects:
Default becomes Value1

MIDI output:

If Mode 0 {absolute, relative-1, relative-2, relative-3} or Controller 0 {32 .. 127}:
$Bc Controller Data

If Mode 0 {absolute/14, relative-1/14, relative-2/14, relative-3/14} and
Controller 0 {0 .. 31}:
1. $Bc Controller DataMSB
2. $Bc Controller+32 DataLSB

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Controller, Data, DataMSB, DataLSB 0 {0 .. 127}
Value1, Value2 0 {0 .. 16383}

This 14-bit range of Value1 and Value2 is anomalous for the 7-bit modes (absolute ..
relative-3). The situation is similar to the one concerning the Value1 and Value2 arguments
of .easypar CC for buttons (q.v.).

Mode:
absolute
relative-1
relative-2
relative-3
absolute/14
relative-1/14
relative-2/14
relative-3/14
Note: in fact the BC also accepts (and returns) inc/dec (which is actually only meant for the
Mode argument of .easypar NRPN). However, this value here results in a dysfunctional
encoder or fader that doesn’t send any MIDI messages.

Note that the MIDI output of a 14-bit mode is in fact that of the corresponding 7-bit mode if Controller
is 32 or higher, since the MIDI Control Change protocol defines only 32 controller numbers (0-31) for
which a corresponding LSB controller number is available (namely 32-63).

How Data and DataMSB/DataLSB relate to the physical control element depends on the Mode argument:
! For absolute and absolute/14, Data and DataMSB/DataLSB represent the actual position

of the control element.
! For the relative modes, Data and DataMSB/DataLSB are encodings of Change. Change reflects

the physical amount of movement, but in the case of encoders also depends on .resolution’s
arguments: these function as multipliers. If you move the control slowly, you usually trigger a

84

sequence of messages with Change only being !1 or +1: you have to move the control rather
quickly to trigger more extreme values for Change.

The table below explains the encoding methods of the 7-bit relative modes:

Mode Method Examples

Change Data

relative-1 Two’s complement !2
!1
(0)
+1
+2

$7E
$7F

($00)
$01
$02

relative-2 Binary offset ($40) !2
!1
(0)
+1
+2

$3E
$3F

($40)
$41
$42

relative-3 Sign-and-magnitude:
the sign is in the most significant bit:
bit 6 of Value is 0 for positive values,
!1 for negative values

!2
!1
+1
+2

$42
$41
$01
$02

Here are the 14-bit relative encoding modes:

Mode Method Examples

Change DataMSB DataLSB

relative-1/14 Two’s complement !2
!1
(0)
+1
+2

$7F
$7F

($00)
$00
$00

$7E
$7F

($00)
$01
$02

relative-2/14 Binary offset ($40 $00) !2
!1
(0)
+1
+2

$3F
$3F

($40)
$40
$40

$7E
$7F

($00)
$01
$02

relative-3/14 Sign-and magnitude:
the sign is in the most significant bit,
i.e. bit 6 of DataMSB

!2
!1
+1
+2

$40
$40
$00
$00

$02
$01
$01
$02

Of course the BC never actually sends Data or DataMSB/DataLSB if Change is 0; they are only included
in the above tables for clarification of the encoding methods.

85

For the relative modes the BC does maintain the range defined by Value1 and Value2, but only in one
respect: the values shown by the BC’s display (provided that ShowValue is on) still refuse to go beyond
the range defined by Value1 and Value2, no matter how hard you keep turning an encoder’s knob.
However, MIDI messages indicating the amount of change are being sent as long as you keep turning
the knob, without any regard for Value1 or Value2! (Apparently the idea is that the receiving MIDI
device is responsible for handling these ongoing messages correctly.)

86

16.4 NRPN (Non-Registered Parameter Number)

BCL syntax: .easypar NRPN Channel NRPN Value1 Value2 Mode

Side-effects:
Default becomes Value1

MIDI output:
1. $Bc $63 NRPN_MSB
2. $Bc $62 NRPN_LSB
3. If Mode 0 {absolute, relative-1, relative-2, relative-3}:

$Bc $06 Data
If Mode = inc/dec:

For an increase: a sequence of one or more $Bc $60(=Data Increment) $01
For a decrease: a sequence of one or more $Bc $61(=Data Decrement) $01

If Mode 0 {absolute/14, relative-1/14, relative-2/14, relative-3/14}:
1. $Bc $06 DataMSB
2. $Bc $26 DataLSB

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
NRPN, Value1, Value2 0 {0 .. 16383}
NRPN_MSB = NRPN shr 7 (i.e. the 7 highest bits of NRPN)
NRPN_LSB = NRPN and $7F (i.e. the 7 lowest bits of NRPN)
Mode:

absolute
relative-1
relative-2
relative-3
inc/dec
absolute/14
relative-1/14
relative-2/14
relative-3/14

Data, DataMSB, DataLSB 0 {0 .. 127} (same calculation as under .easypar CC)

For the 7-bit Mode values (absolute, relative-1, relative-2, relative-3 and inc/dec),
the Value1 and Value2 arguments should actually be 7-bit too, i.e. restricted to the range of 0 .. 127. The
situation is similar to the one concerning the Value1 and Value2 arguments of .easypar CC for
buttons (q.v.).

87

16.5 Pitch Bend

BCL syntax: .easypar PB Channel Range

Side-effects:
Default becomes 64
Value1 becomes 64 ! Range div 2
Value2 becomes 64 + Range div 2

MIDI output:
$Ec $00 Value

Note: the general MIDI Pitch Bend format is $Ec ValueLSB ValueMSB, so the fact that the BC always
sends $00 for ValueLSB means that it doesn’t support 14-bit values: this is a bit strange, since the BC
does support 14-bit values for several other message types.

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Range 0 {0 .. 127}
Value 0 {64 ! Range div 2 .. 64 + Range div 2}

So for instance:
If Range 0 {126, 127}, then Value 0 {1 .. 127} (so Value is never 0!).
If Range 0 {124, 125}, then Value 0 {2 .. 126}.
If Range 0 {2, 3}, then Value 0 {63 .. 65}.
If Range 0 {0, 1}, then Value = 64 (i.e. unchangeable).

88

16.6 Aftertouch

BCL syntax: .easypar AT Channel Scope Value1 Value2

Side-effects:
Default becomes Value1

MIDI output:

If Scope = all:
$Dc Value
This is a Channel Aftertouch message.

If Scope 0 {0 .. 127}:
$Ac Scope Value
This is a Note Aftertouch message.

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Scope 0 {all, 0 .. 127}
Value1, Value2, Value 0 {0 .. 127}

89

16.7 GS/XG

BCL syntax: .easypar GS/XG Channel Parameter Value1 Value2

Side-effects:
Default becomes Value1

MIDI output:

If Parameter’s type is NRPN:
1. $Bc $62 NRPN_MSB
2. $Bc $63 NRPN_LSB
3. $Bc $06 Value

If Parameter’s type is CC:
$Bc CC_Controller Value

Definitions:
Channel 0 {1 .. 16}
c = Channel !1
Parameter, NRPN_MSB, NRPN_LSB and CC_Controller: see the tables in §14.1.1
Value1, Value2, Value 0 {0 .. 127}

90

17 Encoders

An encoder section in a BCL block is introduced by an encoder selector statement:

BCL syntax: $encoder Encoder
BCF2000: Encoder 0 {1 .. 32}
BCR2000: Encoder 0 {1 .. 56}

Encoder Group/Row Model

1 .. 8 Push Encoders (Group 1)

BCF2000/BCR2000
9 .. 16 Push Encoders (Group 2)

17 .. 24 Push Encoders (Group 3)

25 .. 32 Push Encoders (Group 4)

33 .. 40 Encoders (Top Row)

41 .. 48 Encoders (Middle Row) BCR2000

49 .. 56 Encoders (Bottom Row)

An encoder selector statement sets all that encoder’s settings to the following values:

Setting Value

StandardOutput cleared

ShowValue off

Mode off

R1 R2 R3 R4 0 0 0 0

Default off

Value1 0

Value2 0

CustomOutput cleared

Local unknown (probably off)

91

If at least one setting for a particular encoder deviates from its default, the BC includes a corresponding
encoder section in a preset dump. This section contains a subset of the following dot statements, in this
order; individual statements are only sent in certain situations, as indicated:

Statement Situation

.easypar StandardOutput StandardOutput is defined

.showvalue ShowValue always

.mode Mode always

.resolution R1 R2 R3 R4 always

.default Default Default � off

.minmax Value1 Value2 StandardOutput is not defined

.tx CustomOutput both these conditions are met:
! StandardOutput is not defined
! CustomOutput is defined

Note: the BC never sends any .local statement.

Details on the dot statements that are specific to encoders follow on the next pages.

92

17.1 Standard output

A .easypar statement in an encoder section has the following side-effects:

Setting Value

ShowValue off

Mode off

R1 R2 R3 R4

depends on actual .easypar statement
Default

Value1

Value2

CustomOutput cleared

Local unknown

‘Side-effect’ here means that these settings aren’t included as arguments in the .easypar statement
itself, but are changed by the BC ‘behind your back’. However, many .easypar statements do have
Value1 and Value2 as arguments, so strictly speaking their new values are then ‘main’ effects, rather than
‘side’ effects.

93

17.2 Mode

BCL syntax: .mode Mode

Encoders 1-32:
Mode 0 {off, 1dot, 1dot/off, 12dot, 12dot/off, bar, bar/off, spread, pan, qual,
cut, damp}

Encoders 33-56 (BCR2000 only):
Mode 0 {off, 1dot, 1dot/off}
Note: in fact encoders 33-56 also accept (and return) the other values defined for encoders 1-32.
However, the LEDs for encoders 33-56 don’t actually function according to these values.

94

17.3 Resolution

BCL syntax:

To the BC: .resolution R1 [R2 [R3 [R4]]]
Ri 0 {1 .. 65535}

From the BC: .resolution R1 R2 R3 R4

Ri 0 {0 .. 65535}

The B-Control-Tokenreferenz web page claims that only multiples of 96 (or actually 24!) are allowed,
but this is not the case: any value in the range 1..65535 is allowed for any of the four arguments. That
the BC itself often uses defaults that are multiples of 96 is irrelevant in this respect.

The four arguments indicate the amounts of value change per 360-degree rotation, in four
rotational speed regions in increasing order: R1 sets the amount for the lowest speed range, R4 for the
highest. (I haven’t tried to establish the exact speed thresholds; to do so would be rather tricky.)

If you specify fewer than 4 arguments, the BC sets the left-out argument(s) to the last value you
do specify. So e.g. ‘.resolution 96 192’ is interpreted as ‘.resolution 96 192 192 192’.

Note that the R arguments can be higher than the maximum value range of the controller. For instance:

$encoder 1
 .easypar CC 1 1 0 127 absolute
 .showvalue on
 .mode 1dot
 .resolution 1000
 .default 0

This simply causes the knob to traverse the value range (0 to 127) very quickly, namely in 127/1000
(about 1/8) of a full turn.

Obviously, if you specify the same value for all four R arguments, then the encoder value’s change per
rotational distance is constant, no matter how fast you turn the knob.

So for instance ‘.resolution 1 1 1 1’ (or the equivalent ‘.resolution 1’) will cause
an excruciatingly sluggish response of 1 per rotation at any speed.

On the other hand, ‘.resolution 10 100 1000 10000’ will cause enormous increases
in change as you turn faster (or more precisely: whenever you pass a speed threshold).

It is also legal to use decreasing values, e.g. ‘.resolution 10000 1000 100 10’, but
obviously this causes the knob to behave in extremely counter-intuitive ways.

95

Resolution defaults

An encoder section selector statement causes the BC to set all that encoder’s resolution values to zero
(‘.resolution 0 0 0 0’).

A situation in which these four defaults of 0 are not changed, is undesirable for two reasons:
1. The knob doesn’t do anything when you turn it.
2. If you subsequently have the BC perform a preset dump, the BC duly sends ‘.resolution 0

0 0 0’ to the computer. However, you’d better not send this line back to the BC, because that
would lead to a BCL reply with error 11 (‘Argument value out of range’). (So in this case the BC
sends data which it doesn’t accept!)

Two dot statements modify an encoder’s resolution values: .easypar and .resolution. Given the
initialization performed by the section selector statement, you should always include a valid
.resolution statement in any $encoder section that doesn’t include .easypar. Note that a
.minmax statement does not affect the resolution values at all.

A .easypar statement sets four ‘reasonable’ resolution values, as follows:

PC:

Resolution

R1 R2 R3 R4

24 24 24 24

CC, NRPN, AT and GS/XG:

Abs (Value2 ! Value1)
Resolution

R1 R2 R3 R4

0 .. 20 24 24 24 24

21 .. 200 96 96 96 96

201 .. 2000 96 192 384 768

2001 .. 16383 96 192 768 2304

(Thus, the range of 201 .. 2000 uses 96 times 1, 2, 4 and 8, and the range of 2001 .. 16383 uses 96 times
1, 2, 8 and 24.)

PB:

Range
Resolution

R1 R2 R3 R4

0..21(!) 24 24 24 24

22(!)..127 96 96 96 96

96

Of course you can see all these default values by making the BC perform a preset dump. E.g.
‘.easypar NRPN 1 1 0 16383 absolute’ causes the BC to define ‘.resolution 96 192
768 2304’.

97

18 Faders

A fader section in a BCL block is introduced by a fader selector statement:

BCL syntax: $fader Fader

BCF:
Fader 0 {1 .. 9} (note that 9 refers to the BCF’s Foot Controller input socket)

BCR:
Any fader selector statement causes the BCR to return BCL error 9: ‘Element number out of range’.
However, subsequent fader dot statements are processed as if the fader does exist, in the sense that the
BCL Reply error codes follow the same rules as on the BCF. So for instance, if a fader dot statement
occurs in a fader section and is syntactically correct, error 0 (‘No error’) is returned. However, the BCR
never returns any fader sections in preset dumps.

A fader selector statement sets all that fader’s settings to the following values:

Setting Value

StandardOutput cleared

ShowValue off

Motor off

Override move

OverrideButton off

Default off

Value1 0

Value2 0

CustomOutput cleared

98

If at least one setting for a particular fader deviates from its default, the BCF includes a corresponding
fader section in a preset dump. This section contains a subset of the following dot statements, in this
order; individual statements are only sent in certain situations, as indicated:

Statement Situation

.easypar StandardOutput StandardOutput is defined

.showvalue ShowValue always

.motor Motor always

.override Override always

.keyoverride OverrideButton always

.default Default Default � 0

.minmax Value1 Value2 StandardOutput is not defined

.tx CustomOutput both these conditions are met:
! StandardOutput is not defined
! CustomOutput is defined

Details on the dot statements that are specific to faders follow on the next pages.

99

18.1 Standard output

A .easypar statement in a fader section has the following side-effects:

Setting Value

ShowValue off

Motor off

Override move

OverrideButton off

Default

depends on actual .easypar statementValue1

Value2

CustomOutput cleared

‘Side-effect’ here means that these settings aren’t included as arguments in the .easypar statement
itself, but are changed by the BC ‘behind your back’. However, many .easypar statements do have
Value1 and Value2 as arguments, so strictly speaking their new values are then ‘main’ effects, rather than
‘side’ effects.

100

18.2 Motor

BCL syntax: .motor Motor
Motor 0 {off, on}

If Motor is on, a physical fader (1-8) on the BCF automatically moves to the correct position if the
fader’s Value changes; this may occur upon preset selection, value synchronization (see §14.9) or an
incoming MIDI message. Note that you can always switch a fader off temporarily via the key-override
feature (see §18.4).

Basically the motors are what you paid for when you bought the BCF, but these ‘magical’ moves
may sometimes drive you crazy, so .motor off switches them off.

The BCF does maintain Motor for ‘fader’ 9 (the Foot Controller), but this setting is completely
meaningless.

101

18.3 Override

BCL syntax: .override Override
Override 0 {move, pickup}

For faders 1-8 Override is only meaningful if Motor is off. For ‘fader’ 9 (the Foot Controller), Override
is always meaningful: the value of fader 9’s Motor is ignored.

If Override is move, the BCF’s display immediately outputs (and shows, if ShowValue is on) any
new value corresponding with your manipulation of the physical fader (or foot controller), no matter
which value has been sent to the BCF most recently via MIDI. So this setting may lead to jumps in value.

If Override is pickup, the behavior after the BC has received a value for the fader (or foot
controller) via MIDI is different: the BCF then only starts outputting (and possibly showing) your new
manually entered values after you have first moved the fader or foot controller to the position
corresponding with the value received via MIDI. So if Override is pickup, it is highly advisable to set
ShowValue to on: the BCF’s display then keeps showing the value to which you have to move until you
have indeed reached that position: otherwise you may end up moving the fader or foot controller for ages
without ever realizing that the BCF isn’t actually sending any corresponding MIDI messages because you
haven’t passed the target position yet!

102

18.4 Key-override

BCL syntax: .keyoverride OverrideButton
To the BC: OverrideButton 0 {off, 1 .. 64}
From the BC: OverrideButton 0 {off, 1 .. 8, 33 .. 64}

If OverrideButton is off, no button affects the fader’s motor. Otherwise OverrideButton represents the
number of the button that you can keep pressed to temporarily switch the motor off: this may prevent you
and a sequencer program from getting into a tug-of-war. (Obviously this key-override method is only
required if Motor has been set to on: after .motor off the motor is off anyway!)

The BC does accept any value representing a button in push encoder group 2, 3 or 4 (i.e. buttons 9 .. 32),
but converts such a value to its corresponding button number in group 1, i.e. to ((OverrideButton !1)
mod 8) + 1.

Notes:

! One button can be selected for any number of faders, so one button could even temporarily switch
off all motors simultaneously.

! Somewhat curiously, the BCF treats a .keyoverride statement for ‘fader’ 9 (the Foot
Controller) in exactly the same way as for the actual faders 1-8. However, pressing the button
associated with ‘fader’ 9 doesn’t achieve anything, because obviously external foot controllers
don’t have BCF-controlled motors.

103

19 Memory presets

All settings made via $preset, $button, $encoder and $fader affect the settings of the current,
‘temporary’ preset: its settings are lost when the BC is switched off. However, there are also 32 memory
presets, whose settings are retained during the time the BC is off.

The $recall and $store commands allow you to copy the temporary preset to a memory preset, and
vice versa.

104

19.1 Recall

BCL syntax: $recall MemoryPreset
MemoryPreset 0 {1 .. 32}

$recall loads the temporary preset from the memory preset specified by MemoryPreset. There are also
a number of side-effects: see §19.3.

105

19.2 Store

BCL syntax: $store MemoryPreset
MemoryPreset 0 {1 .. 32}

$store saves the temporary preset as the memory preset specified by MemoryPreset.

106

19.3 Preset selection

There are four ways of selecting a memory preset:

1. Press ‘= PRESET” or ‘PRESET <’ on the BC. See §23.5 for discussion.

2. Send a Program Change MIDI message to the BC. Specifically: $Cn MemoryPreset!1, where n
is equal to .rxch’s ReceiveChannel !1.

3. Send Behringer’s SysEx command $22 to the BC, specifying the desired memory preset.

4. Send a BCL chain to the BC containing a recall statement: $recall MemoryPreset.

Any of these preset selection methods causes the BC to execute the following sequence of actions:

1. The BC copies the selected memory preset’s settings to the temporary preset. Note that this does
not include the Value settings of the memory preset’s elements, since these Value settings aren’t
actually part of the memory preset as such.

2. If the preset’s Request setting is on, the BC sends any MIDI bytes defined in the preset’s LEARN
output (as defined via one or more .tx statements).

3. If the preset’s Snapshot setting is on, the BC sends any standard and/or custom output defined for
the preset’s elements. See §23.4.

107

20 Unknown dot statements

Dot statements that do exist, but do not work in any of the known sections:
.rangeon (argument specs unknown)
.xref (argument specs unknown)

On both the BCF and the BCR these dot statements produce error 13 (‘Setting not allowed in current
section’) in any section ($global, $preset, $button, $encoder, $fader). Note that they do not
generate error 1, so these dot statements are indeed defined. Very strange.

108

21 BCL Reply messages

Each BCL message you send to a BC causes this BC to reply with a message indicating the reception of
the BCL message. If an error occurred, the reply message specifies the error type.

As far as I know, a BC cannot be instructed not to send these reply messages, although a computer
program can of course ignore any or all of them.

21.1 MIDI format

Item description MIDI byte(s)

System Exclusive $F0

Manufacturer $00 $20 $32 (=Behringer)

Device ID $0x (0..15) (=actual device’s ID !1)

Model $14 (=BCF2000) or $15 (=BCR2000)

Command $21 (=BCL reply message)

Index_MSB 0bbbbbbb

Index_LSB 0bbbbbbb

Error code 0bbbbbbb (see §21.2)

End-Of-Exclusive $F7

Index_MSB and Index_LSB together constitute the 14-bit index as it occurred in the BCL message to
which the BC is responding.

109

21.2 Error codes

The following pages describe the error codes occurring in BCL Reply messages. (Actually error 7 is
probably internal to the BC.)

Each error code is described in three ways:

1. BC-EDIT identifier:
The error code’s name occurring in BCLError.class, which is a file embedded in BC-EDIT’s
bcedit.jar. In most cases ‘BC-EDIT identifier’ is simply a contracted version of ‘BC-EDIT
message’ (see below), but in one case (error 7) it provides information ‘BC-EDIT message’
doesn’t.

2. BC-EDIT message:
The error code’s message occurring in BCLError.class.

3. Meaning:
The error code’s message in BC Manager. Hopefully these messages are more to-the-point than
those used in BC-EDIT.

110

21.2.1 Error 0

BC-EDIT identifier: noerr
BC-EDIT message: OK

Meaning: No error.

111

21.2.2 Error 1

BC-EDIT identifier: unknowntoken
BC-EDIT message: unknown token

Meaning: Invalid identifier after ‘$’ or ‘.’.

Examples:
‘$’
‘.’
‘$haha’
‘.boo’

112

21.2.3 Error 2

BC-EDIT identifier: datawithouttoken
BC-EDIT message: data without token

Meaning: ‘$’ or ‘.’ expected.

Occurs for any non-empty line that doesn’t start with ‘$’, ‘.’ or ‘;’ (ignoring spaces, of course).

Example:
‘nonsense’

Note: this error number is also shown in the BC’s display upon the reception of faulty firmware data, as
discussed in §6 under Firmware Reply.

113

21.2.4 Error 3

BC-EDIT identifier: argumentmissing
BC-EDIT message: argument missing

Meaning: MIDI output argument expected.

Examples:
‘.tx’ (without any MIDI bytes)
‘.tx $F0 cks-1’ (without argument for cks-1)

114

21.2.5 Error 4

BC-EDIT identifier: wrongdevice
BC-EDIT message: wrong device

Meaning: Invalid model.

This error causes termination of any current section. This error does not cause termination of any current
block.

This error has precedence over error 5.

A note on terminology: BC-EDIT confusingly states that this error occurs if there is a ‘wrong device’,
but in fact it concerns the Model specified in a $rev statement. Talking about a model here is also more
consistent with the B-Control System Exclusive message format (described in §6), which includes both
a ‘Device ID’ (which can be set manually for each BCF2000 and BCR2000) and a ‘Model’ (BCF2000
or BCR2000).

Examples:
BCR: ‘$rev r1’
BCR: ‘$rev F0’
BCR: ‘$rev F1’

115

21.2.6 Error 5

BC-EDIT identifier: wrongrevision
BC-EDIT message: wrong revision

Meaning: Unsupported revision.

This error causes termination of any current section.

Unlike error 4, this error also causes termination of any current block (i.e. it functions like $end).

Examples:
BCR: ‘$rev R0’
BCR: ‘$rev R01’

116

21.2.7 Error 6

BC-EDIT identifier: missingrevision
BC-EDIT message: missing revision

Meaning: No block defined.

This error occurs for a section selector, command or dot statement outside a block (i.e. when no $rev
has been sent in the same message chain, or when $end has been sent after the last $rev in the same
chain).

This error has precedence over error 13.

This error also occurs if you send $rev R1 with a correct BCL message index of 0, followed by
$preset with an incorrect BCL message index of 0 (should be 1).

Compare error 22.

Examples:
(no previous $rev) , ‘$global’
(no previous $rev) + ‘$global’ , ‘.init’
(no previous $rev) + ‘$preset’ , ‘.init’

117

21.2.8 Error 7

BC-EDIT identifier: internal
BC-EDIT message: none

Meaning: Unknown.

So far I have never encountered this error, and indeed the BC-EDIT identifier and the lack of a
corresponding BC-EDIT message suggest that this is a BC-internal error message that is never sent in
a BCL Reply message.

118

21.2.9 Error 8

BC-EDIT identifier: modemissing
BC-EDIT message: mode missing

Meaning: No section defined.

This error occurs for a dot statement outside any section (compare error 13).

This error has precedence over error 6. (So the BC first checks the presence of a section, then the
presence of a block, and then the identity of the section!)

Examples:
BCR: ‘$rev R1’ , ‘.init’
(no previous $rev) , ‘.init’

119

21.2.10 Error 9

BC-EDIT identifier: baditemindex
BC-EDIT message: bad item index

Meaning: Element number out of range.

This error does not occur for ‘$recall 33’ or ‘$store 33’, which generate error 11 (q.v.).

Examples:
‘$encoder 99’
BCR(!): ‘$fader 1’

120

21.2.11 Error 10

BC-EDIT identifier: notanumber
BC-EDIT message: not a number

Meaning: Invalid numerical argument.

This error occurs when a number is expected but e.g. a string is found.

Examples:
‘$encoder bad’
‘.default on’ (note: ‘.default off’ is legal; so the occurrence of error 10 for on probably
indicates that .default primarily expects a numerical value)
‘.tx $F0 F7’ (‘F7’ is the offender here)

121

21.2.12 Error 11

BC-EDIT identifier: valoutofrange
BC-EDIT message: value out of range

Meaning: Argument value out of range.

This error occurs when a numerical argument exceeds its allowed range.

Examples:
‘.egroups 0’
‘.egroups 5’
‘$recall 33’
‘$store 33’

122

21.2.13 Error 12

BC-EDIT identifier: invalidargument
BC-EDIT message: invalid argument

Meaning: Invalid text argument.

This error occurs when a text argument is expected, but an invalid string (or even a number) is found.

Examples:
‘.showvalue dumbo’
‘.showvalue 1’
‘.easypar CC 1 1 0 127 boo’
‘.name '’
‘.name NoStartingQuote’
‘.name '1234567890123456789012345'’

123

21.2.14 Error 13

BC-EDIT identifier: invalidcommand
BC-EDIT message: invalid command

Meaning: Setting not allowed in current section.

This error occurs for a dot statement in the wrong section (compare error 8).

This error has precedence over error 14.

Examples:

‘$global’
‘.init’

‘$preset’
‘.rxch off’

124

21.2.15 Error 14

BC-EDIT identifier: wrongnumberofargs
BC-EDIT message: wrong number of arguments

Meaning: Invalid number of arguments (too few or too many).

This error has precedence over errors 4, 5, 10, 11 and 12.

Examples:
BCR: ‘$rev R1 extra’
‘.minmax 0’
‘.minmax 0 100 1’
‘.name’
‘.name 'valid' invalid’

125

21.2.16 Error 15

BC-EDIT identifier: toomuchdata
BC-EDIT message: too much data

Meaning: Too much MIDI output data.

Context: a .tx statement that overflows the LEARN or custom output data area of 127 positions. (See
§13.7 and §14.6 for details.) Note that this limit does not concern the length of the received BCL line (or
message).

126

21.2.17 Error 16

BC-EDIT identifier: alreadydefined
BC-EDIT message: already defined

Meaning: unknown. (Never encountered yet.)

127

21.2.18 Error 17

BC-EDIT identifier: presetmissing
BC-EDIT message: preset missing

Meaning: unknown. (Never encountered yet.)

128

21.2.19 Error 18

BC-EDIT identifier: presettoocomplex
BC-EDIT message: preset too complex

Meaning: Preset too complex.

The BC displays this error when you manually try to store the temporary preset to a memory preset if the
temporary preset contains too many definitions. (‘Manually’: i.e. by pressing STORE, optionally
selecting a memory preset number, and pressing STORE again.) If this error occurs, the existing memory
preset data is not affected in any way.

Curiously the BC does not return error 18 upon reception of a $store command via MIDI if the
temporary preset is too complicated; I think this is a bug. However, as in case of a manual invalid
attempt, the existing memory preset data is not affected in any way.

The total maximum definition size is 4956 bytes for the BCF2000 and 4344 bytes for the BCR2000.
The following items count toward this total:
! The preset’s LEARN output definition.
! The elements’ standard output definitions.
! The elements’ custom output definitions.

129

21.2.20 Error 19

BC-EDIT identifier: wrongpreset
BC-EDIT message: wrong preset

Meaning: unknown. (Never encountered yet.)

130

21.2.21 Error 20

BC-EDIT identifier: presettoonew
BC-EDIT message: preset to onew [sic — this may be a typo in BCLError.class: it may have been
intended as ‘preset too new’, although that doesn’t really make sense either]

Meaning: unknown. (Never encountered yet.)

131

21.2.22 Error 21

BC-EDIT identifier: presetcheck
BC-EDIT message: preset check

Meaning: unknown. (Never encountered yet.)

132

21.2.23 Error 22

BC-EDIT identifier: sequence
BC-EDIT message: sequence error

Meaning: Invalid message index.

Compare error 6.

133

21.2.24 Error 23

BC-EDIT identifier: wrongcontext
BC-EDIT message: wrong context

Meaning: unknown. (Never encountered yet.)

134

22 Startup functions

By keeping one or two specific buttons pressed while switching the POWER button on, you can execute
the following functions:

Model Button(s) held Function Display

BCF2000/BCR2000
STORE + LEARN Enter bootloader mode LOAd

STORE + EXIT Initialize temporary preset Init

BCF2000

33 (top row, column 1) Select standard B-Control mode bC

34 (top row, column 2) Select Mackie Control Mapping
for Cubase SX and Nuendo

MC C

35 (top row, column 3) Select Logic Control Mapping
for Logic Audio

LC

36 (top row, column 4) Select Mackie Control Mapping
for Sonar 3

MCSo

37 (top row, column 5) Select Mackie Baby HUI Mapping bhuI

In all cases except bootloader mode, the BC’s display first briefly shows the firmware version number
before the message specified in the Display column in the above table.

Note that initializing the temporary preset only works in standard B-Control mode. Obviously the BCR
is always in standard B-Control mode, since it has no emulation modes. However, on the BCF this
initialization doesn’t work if an emulation mode was active when the BC was last powered off.

Actually you can switch from a BCF emulation mode to standard B-Control mode and initialize
the temporary preset in one go, by holding button 33 and STORE + EXIT while pressing the POWER
button. Unless you’re an octopus, this requires some twister-like hand positioning: try pressing the
POWER button with your right thumb, while holding button 33 with your left hand and STORE and
EXIT with the little and ring fingers respectively of your right hand.

Further details on these startup functions follow on the following pages.

135

22.1 Bootloader mode

In bootloader mode the BC has very limited functionality. All buttons, encoders and faders are dead, and
standard MIDI output B and the USB connection don’t work. The BC only responds to two types of
SysEx messages (cf. §6) sent to its standard MIDI input:

1. Request Identity:
The BC responds with a Send Identity message to its standard MIDI output A. The returned
identity string is ‘BCF2000 BOOTLOADER 1.0’ and ‘BCR2000 BOOTLOADER 1.0’ for the
BCF and BCR respectively.

2. Send Firmware:
After every sixteenth Send Firmware message, the BC responds with a Firmware Reply message
to its standard MIDI output A.

Note that Device ID is $7F (=‘any’) in any Send Identity or Firmware Reply message from a BC in
bootloader mode. Bootloader mode doesn’t use the ‘actual’ Device ID (1-16) set via Global Setup, simply
because it doesn’t have access to it.

To return from bootloader mode to standard B-Control mode (or to the previously selected BCF
emulation mode), you can simply switch off the BC, then on again. Upon restart, you don’t have to hold
any buttons, because unlike the BCF emulation modes, bootloader mode is not ‘permanent’.

Note that the BC enters bootloader mode automatically (i.e. without the user pressing any keys during
power-on) if the BC’s current firmware is somehow invalid (e.g. because the previous firmware upgrade
procedure was interrupted). The display then shows ‘noOS’, which stands for ‘no Operating System’.
You can only remedy this situation by sending valid firmware to the BC’s standard MIDI input.

136

22.2 Initialization of temporary preset

Provided that the BC is in standard B-Control mode, the Init function starts up the BC normally, except
that the temporary preset is ‘empty’, rather than loaded with the settings from the memory preset selected
via .startup StartupPreset (cf. §12.2). It’s as if you send the following BCL chain to the BC:

$rev F1 ; this is for the BCF: the BCR of course needs R1 here
$preset
 .name 'init '
 .snapshot off
 .request off
 .egroups 4
 .fkeys on
 .lock off
 .init
$end

This initialization is useful if you want to set up a preset from scratch. It also avoids any undesired
immediate LEARN output (as defined in the selected memory preset) to the receiving MIDI device(s).

137

22.3 The BCF2000 emulation modes

The BCF2000’s emulation modes (or ‘mappings’) provide partial or complete emulations of other MIDI
control devices. See Behringer’s BCF2000_Emulation_modes.pdf document for details.

From among the System Exclusive commands available in standard B-Control mode, the emulation
modes recognize only Request Identity and Send Firmware, and respond by Send Identity and Firmware
Reply messages respectively. So in this respect they behave like bootloader mode. However, their actual
response messages are exactly the same as in the standard B-Control mode, not as in bootloader mode:
these messages contain the ‘actual’ Device ID (1-16), and the Send Identity message contains the
standard identity string, i.e. ‘BCF2000 1.10’ or ‘BCR2000 1.10’.

Global Setup edit mode is available immediately after power-on if you keep the emulation mode’s
button (34, 35, 36 or 37) pressed until ‘EG’ appears in the BC’s display. However, some of the global
settings available in standard B-Control mode are unavailable now:

Push encoder Setting/function Available in emulation mode

1 MidiMode yes

2 ReceiveChannel no

3 FootSwitch yes

4 StartupPreset no

5 DeviceID yes

6 SysEx dump no

7 DeadTime yes

8 TransmissionInterval yes

138

22.3.1 Emulation mode identity SysEx messages

Six types of emulation mode identity message pertain to the BCF when it is in MC C, LC or MCSo mode
(but not in standard B-Control or bhuI mode). These are three types of Mackie identity request message
(one ‘long’ one and two ‘short’ ones), each with a corresponding identity reply message.

Note: I haven’t been able to lay my hands on any Mackie SysEx specs documents, so I haven’t
been able to establish the nature of the conceptual differences between these message types; hence, the
descriptions below are rather tentative. Also note that there are other Mackie SysEx messages that can
be sent to the BCF in certain emulation modes, but I haven’t fully investigated these yet.

1. Request Emulation Mode Long Identity

Format:
F0 00 00 66 m 00 F7

! Bytes two to four ($00 $00 $66) are the Mackie Manufacturer ID.
! The fifth byte (m) must be $10 if the targeted BCF is in LC mode and $14 if it’s in MC C or MCSo

mode. (I have no idea why no distinction is made between MC C and MCSo modes.)
! The sixth byte ($00) is a command byte meaning ‘Request Emulation Mode Long Identity’.

When the BCF receives this message, it replies with a corresponding Send Emulation Mode Long
Identity message (see below), provided that it is in the mode indicated by m, otherwise it does not
respond in any way.

2. Send Emulation Mode Long Identity

Format:
F0 00 00 66 m 01 54 5A 42 47 2D n 2D 42 43 46 n F7

! Bytes two to four ($00 $00 $66) are the Mackie Manufacturer ID.
! Byte five (m) indicates the BCF’s emulation mode: $10 = LC, $14 = MC C or MCSo.
! The sixth byte ($01) is a command byte meaning ‘Send Emulation Mode Long Identity’.
! The rest of the message data is a text string following the pattern ‘TZBG-n-BCFn’:

! ‘TZ’ are the initials of the Behringer developer of the BCF2000 and BCR2000.
! ‘BG’ probably stands for ‘Behringer’.
! Each of the two ns is actually a character from ‘A’ ($41) to ‘P’ ($50), calculated as the

BCF’s DeviceID + $40. (So ‘A’ means that DeviceID is 1 and ‘P’ means that DeviceID is
16.) As far as I know, the values of the two ns are always identical; I don’t know why the
Device ID is thus represented twice in this text string.

! ‘BCF’: very obvious...

The BCF sends this message in two situations:
! Upon power-on, provided it is in MC C, LC or MCSo mode.
! Upon reception of a Request Emulation Mode Long Identity message (see above), provided that

the request message contains the correct value for m.
Note that the BCF only replies if the request message’s m matches the BCF’s actual

emulation mode. So discovering the BCF’s current emulation mode via these messages is a
complicated affair: you must send both the MC C/MCSo and the LC mode identity requests, and
(since there are no emulation mode identity messages whatsoever in B-Control or ‘bhuI’ mode)

139

you must also send a BC message (as described in §6) to which the BCF only responds in B-
Control mode (e.g. a temporary preset name request).

3. Request Emulation Mode Short Identity

Format:
F0 00 00 66 m 02 F7

! Bytes two to four ($00 $00 $66) are the Mackie Manufacturer ID.
! Byte five indicates the BCF’s emulation mode: $10 = LC, $14 = MC C or MCSo.
! The sixth byte ($02) is a command byte meaning ‘Request Emulation Mode Short Identity’.

When the BCF receives this message, it replies with a corresponding Send Emulation Mode Short
Identity message (see below), provided that it is in the mode indicated by m, otherwise it does not
respond in any way.

4. Send Emulation Mode Short Identity

Format:
F0 00 00 66 m 03 54 5A 42 47 2D n 2D F7

! Bytes two to four ($00 $00 $66) are the Mackie Manufacturer ID.
! Byte five (m) indicates the BCF’s emulation mode: $10 = LC, $14 = MC C or MCSo.
! The sixth byte ($03) is a command byte meaning ‘Send Emulation Mode Short Identity’.
! The rest of the message data is a text string following the pattern ‘TZBG-n-’. This is a shortened

version of the string in Send Emulation Mode Long Identity message (see above).

The BCF sends this message upon reception of a Request Emulation Mode Short Identity message (see
above), provided that the request message contains the correct value for m.

5. Request Emulation Mode Short Identity (alternative)

Format:
F0 00 00 66 m 1A F7

! The sixth byte ($1A) is a command byte meaning ‘Request Emulation Mode Short Identity
(alternative)’.

! All other specs are identical to those of the message type discussed under (3) above.

6. Send Emulation Mode Short Identity (alternative)

Format:
F0 00 00 66 m 1B 54 5A 42 47 2D n 2D F7

! The sixth byte ($1B) is a command byte meaning ‘Request Emulation Mode Short Identity
(alternative)’.

! All other specs are identical to those of the message type discussed under (4) above.

140

The BCF sends this message upon reception of the message type discussed under (5) above, provided
that the request message contains the correct value for m.

141

23 Functions in standard B-Control mode

The table below specifies a number of functions that can be executed when the BC is in standard B-
Control mode:

Function Action 1 Action 2 Section in B-Control manual

Copy Encoder Group
Press STORE

Press encoder group 4.2.3

Store Preset Select preset number 4.2.2

LEARN Hold LEARN Move element 4.3.1

Edit Global Setup

Hold EDIT

Press STORE 4.5

Data Request Press LEARN 4.6 (3rd item)

Panic Reset Press EXIT 4.6 (2nd item)

Snapshot Send Press ‘= PRESET’ 4.6 (4th item)

Single Preset Dump Press ‘PRESET <’ 4.6 (5th item)

Edit Element Move element 4.3.2 and 4.6 (6th item)9

Temporary Local Off Hold EXIT Move element 4.6 (1st item)

Select Preset

Press ‘= PRESET’ !

4.2.1
Hold ‘= PRESET’ Rotate encoder

Press ‘PRESET <’ !

Hold ‘PRESET <’ Rotate encoder

‘Press’ here means ‘push and release’, and of course ‘Hold’ means ‘push, but don’t release yet’.
Note that the actions mentioned in this table are just meant as quick reminders: in some cases

subsequent actions are required to complete the operation. Refer to the pertinent sections in the B-Control
manual for the full procedures.

The next pages look at some of these functions in more detail:

9 Section 4.6 of the B-Control manual specifically discusses the edit procedure for ‘Motor Off Function’: you can select
a key-override button by pressing that button. However, this editing facility actually takes place within the context of fader
editing, which is why this table doesn’t mention ‘Motor Off Function’.

142

23.1 LEARN

The LEARN function temporarily puts the BC in learning mode. This enables you to define a particular
element’s custom output: the BC sets the element’s CustomOutput to the first MIDI message you send
to the BC while it is in learning mode. Upon reception of this MIDI message, the BC automatically
terminates learning mode and informs you whether the received MIDI message is ‘GOOd’ or ‘bAd’.

Obviously, the BC’s LEARN function is limited in several ways:
! Since only the first received MIDI message is entered into CustomOutput, you can’t create

CustomOutput consisting of two or more messages (either in a single .tx statement or spread out
across multiple .tx statements).

! You can’t define special identifiers.
So if you want to use any of these more advanced features, you cannot use the BC’s LEARN function;
instead, you must send a BCL chain containing the element’s CustomOutput definition to the BC. See
§14.6 for details.

143

23.2 Data Request

The Data Request function makes the BC send the MIDI bytes defined via the temporary preset’s
LearnOutput. See §13.7.

144

23.3 Panic Reset

The B-Control manual is vague about what the Panic Reset function actually does:
The German version says ‘mit dieser Funktion werden die wichtigsten MIDI-Daten

zurückgesetzt’. This literally means ‘with this function the most important MIDI data is reset’.
By contrast, the corresponding sentence in the English manual reads ‘this function resets the

most important MIDI data to their factory settings’. The phrase ‘to their factory settings’ throws a rather
different light on the matter: it suggests that Panic Reset affects the BC’s global setup (operating mode,
receive channel etc.). However, this is definitely not the case: Panic Reset doesn’t affect the BC itself
in any way — not even its temporary preset, let alone its global setup.

Actually, Panic Reset causes the BC to output the following sequence of MIDI messages:

1. For each MIDI channel c from $0 to $F:
1. $Bc $7B $00 All Notes Off
2. $Bc $78 $00 All Sounds Off
3. $Bc $40 $00 Damper Pedal , Off
4. $Bc $01 $00 Modulation , 0

2. For each MIDI channel c from $0 to $F:
$Ec $00 $40 Pitch Bend , 0

So the BC first outputs four messages starting with $B0, then four with $B1 etc., and finally the sixteen
$Ec messages.

Note that although Panic Reset sends messages to reset the receiving MIDI device’s Damper
Pedal and Modulation controllers, any elements on the BC using these controllers are not reset.
Obviously this can lead to mismatches between the BC and the receiving device.

145

23.4 Snapshot Send

The Snapshot Send function makes the BC send any standard and/or custom output defined for the
elements of the temporary preset. However, if an element’s Value is off, no output whatsoever is sent
for that element, not even any custom output messages that don’t even refer to Value.

The order used is as follows:
1. Only on the BCF: the active faders.
2. The active encoders.
3. The active buttons.

Note that the BC ‘stupidly’ sends multiple values for the same MIDI entity (e.g. a particular note number
on a particular MIDI channel) if two or more elements use it. These values can even be different, namely
if the Default settings of the elements differ and the user hasn’t physically manipulated one of the
elements involved and no MIDI message mentioning the MIDI entity has been sent to the BC (cf. §14.9).

146

23.5 Select Preset

Pushing the ‘= PRESET’ or ‘PRESET <’ button down selects the previous, respectively next preset. If
you then keep this button pushed down, you can select any preset quickly by rotating any encoder knob.
See §19.3 for other methods of preset selection and discussion of its effects.

147

	1 Introduction
	2 Contents
	3 Terminology
	4 Notational conventions
	5 Document version history
	6 MIDI System Exclusive messages
	6.1 Commands

	7 BCL messages
	7.1 MIDI format

	8 BCL text
	8.1 Case-sensitivity
	8.2 Spaces
	8.3 Empty lines
	8.4 Comments
	8.5 Numbers

	9 BCL blocks
	9.1 Block Start statement
	9.2 Block End statement

	10 BCL sections
	11 Side-effects of BCL section selector statements
	11.1 Reinitialization of settings
	11.2 Multiple occurrences of the same section selector statement
	11.3 Invalid element selector statements

	12 Global setup
	12.1 MIDI mode
	12.2 Startup preset
	12.3 Foot switch
	12.4 Receive channel
	12.5 Device ID
	12.6 Transmission interval
	12.7 Dead time
	12.8 Factory defaults

	13 Presets
	13.1 Name
	13.2 Snapshot
	13.3 Request
	13.4 Encoder groups
	13.5 Function keys
	13.6 Lock
	13.7 LEARN output
	13.8 Initialization of all elements

	14 Control elements
	14.1 Standard output
	14.1.1 GS/XG Main Control parameters

	14.2 Show value
	14.3 Default value
	14.4 Current value
	14.5 Physical mapping
	14.6 Custom output
	14.6.1 Data Specifier
	14.6.2 Change Definition
	14.6.3 Checksum Definition
	14.6.4 Direction Specifier
	14.6.5 Repeat
	14.6.6 Length of custom MIDI output definitions

	14.7 Local
	14.8 Standard vs. custom MIDI output
	14.9 Value synchronization
	14.9.1 Button increment mode
	14.9.2 Encoder resolutions
	14.9.3 Frankenstein faders (a.k.a. fader calibration test)

	15 Buttons
	15.1 Standard output
	15.2 Program Change
	15.3 Control Change
	15.4 NRPN (Non-Registered Parameter Number)
	15.5 Note
	15.6 Aftertouch
	15.7 MMC (MIDI Machine Control)
	15.8 GS/XG
	15.9 Mode
	15.10 Increment mode

	16 Continuous elements (encoders/faders)
	16.1 Standard output
	16.2 Program Change
	16.3 Control Change
	16.4 NRPN (Non-Registered Parameter Number)
	16.5 Pitch Bend
	16.6 Aftertouch
	16.7 GS/XG

	17 Encoders
	17.1 Standard output
	17.2 Mode
	17.3 Resolution

	18 Faders
	18.1 Standard output
	18.2 Motor
	18.3 Override
	18.4 Key-override

	19 Memory presets
	19.1 Recall
	19.2 Store
	19.3 Preset selection

	20 Unknown dot statements
	21 BCL Reply messages
	21.1 MIDI format
	21.2 Error codes
	21.2.1 Error 0
	21.2.2 Error 1
	21.2.3 Error 2
	21.2.4 Error 3
	21.2.5 Error 4
	21.2.6 Error 5
	21.2.7 Error 6
	21.2.8 Error 7
	21.2.9 Error 8
	21.2.10 Error 9
	21.2.11 Error 10
	21.2.12 Error 11
	21.2.13 Error 12
	21.2.14 Error 13
	21.2.15 Error 14
	21.2.16 Error 15
	21.2.17 Error 16
	21.2.18 Error 17
	21.2.19 Error 18
	21.2.20 Error 19
	21.2.21 Error 20
	21.2.22 Error 21
	21.2.23 Error 22
	21.2.24 Error 23

	22 Startup functions
	22.1 Bootloader mode
	22.2 Initialization of temporary preset
	22.3 The BCF2000 emulation modes
	22.3.1 Emulation mode identity SysEx messages

	23 Functions in standard B-Control mode
	23.1 LEARN
	23.2 Data Request
	23.3 Panic Reset
	23.4 Snapshot Send
	23.5 Select Preset

