
Staapl’s Macro Forth for PIC18

TOM SCHOUTEN

August 4, 2008

Abstract

Staapl is a collection of abstractions for metaprogramming mi-
crocontrollers from within PLT Scheme. The core of the system is a
programmable code generator structured around a functional concate-
native macro language called Coma. Combining Coma extended with
Forth’s structured programming macros and a Forth syntax frontend
yields Purrr, a Forth macro language with partial evaluation. This
document describes a particular specialized instance of Purrr, namely
the staapl/pic18 dialect for Microchip’s PIC18 architecture, hence-
forth called “The Forth”.

1 Introduction

The Forth is a Forth dialect specifically tailored to flash ROM based micro-
controllers. A Forth typically enables direct low–level machine access in a
resource–friendly way while providing a solid base for constructing high–level
abstractions. The Forth is built on top of a purely functional compositional
macro language for called Coma. The Coma primitives are built from (vir-
tual) machine language rewrite rules. In essence, Coma can be ported to any
real or virtual machine, but in this document we concentrate on the port to
Microchip’s PIC18.

Staapl contains an interaction system that supports incremental devel-
opment for tethered systems. The idea behind this is to keep what is good
about a stand–alone Forth implementation, but simulate it on a host system
such that the target code can be kept minimal. The interaction system is
documented elsewhere.

1

The PIC18 port implements a stack machine model as a thin layer atop
the machine architecture. The implementation consists of a collection of
PIC18 assembly code rewrite rules1. This manual is intended for an audience
familiar with assembly language programming and somewhat familiar with
the ideas behind the Forth language.

1.1 Expansion and Contraction

To understand the Forth from a high level, it is instructive to use the sub-
stitution model of code translation. A program is essentially a collection of
macros which will be instantiated, meaning they will eventually be translated
to executable machine code.

A sequence of words, which are textual entities separated by whitespace,
can be expanded to another string of words by substituting each word with
the sequence comprising its definition. This process continues indefinitely
until a word can no longer be expanded into a string of words. Such a word
is called a primitive. These primitives have a direct relation to executable
machine code. For example, the word double might expand to the string
dup +.

Thus far this model describes just the semantics of a macro assembler.
The Forth is an extension of this paradigm because it allows a process of
contraction too. For example the sequence 1 + might contract to the shorter
sequence increment.

So words can be expanded to sequences, but sequences can also be con-
tracted to words, or different sequences. This model is simple but powerful. It
allows a unified approach to the problems of optimization and metaprogram-
ming. The process of expansion supports bottom up programming : building
larger things out of smaller things. The process of contraction allows program
specialization through parameterization using general high level components
to describe specialized efficient code.

In reality, instead of operating on concatenative code as described above
for the higer level semantics, the processes of expansion and contraction is
implemented as operations on target code using Coma macros. A macro

1This system is part of the public API of Staapl, and should make it straightforward to
create different machine architecture backends. The rewrite rules system is accompanied
by an assembler generator. Including an assembler in–core has the advantage of not having
to serialize expressions dependent on target addresses.

2

is a function that generates machine code, or transforms previously gener-
ated machine code. Forth compilation (macro instantiation) is incremental
and it reads from left to right. The inclusion of rewrite rules for virtual,
non–compilable machine instructions is what enables metaprogramming and
partial evaluation.

1.2 Rationale

The Forth is not a standard (ANS) Forth. It is fairly minimal, and takes
from standard Forth just those elements that are essential to build a proto
language: procedure and macro words, stacks, global variables and control
structures. The key differences are the use of 8–bit data words, separate
code and data spaces, and the lack of reflection, which is entirely replaced
by layered metaprogramming.

So, why Forth? First, the absence of lexical variables and the simple se-
mantics of function composition make it very convenient to use for metapro-
gramming. Program generation is just concatenation of sequences.

Second, the Forth paradigm by itself supports a reasonably high level of
programming without requiring heavy run-time support while retaining pre-
cise control over the underlying machinery. Microcontroller programs often
contain a mix of simple but highly specialized hand–tuned low–level code
that has to be as efficient as possible, and a bulk of high–level management
code that is complex but less time critical. Due to the use of stacks, Forth
supports a referentially transparent programming style resembling functional
programming. It allows factoring of programs into a collection of small func-
tions called words. Such a style promotes reuse, layered abstraction and
individual testability.

The Forth aims to be minimal from an on–target kernel perspective. It is
a native Forth built entirely on top of macros, and doesn’t requiring a runtime
kernel. Effective boot code consists of a couple of instructions to setup the
stack pointers and there is no further run-time overhead. Forth macros are
composable, just like functions, and can be used to add language features that
cannot be expressed using composition of procedure words alone. The macros
make up a purely functional stack language based on function composition,
and can use a rich dynamic type system (borrowed from Scheme) that can
be used to perform compile time computations.

The downside of removing reflection and independence is the loss of inter-
active development. However, considerable effort has been spent on keeping

3

the system interactive through simulation, and reasonably introspective, just
like a reflective self–hosting Forth. It is possible to inspect and modify ma-
chine code and data state while running, execute arbitrary code, and compile
and upload code on–the–fly.

2 The Forth Language

2.1 How Forth?

A Forth program consists of a sequence of words. There are two classes of
words. A procedure word refers to a program fragment that is represented
as an individually executable chunk of machine code instructions. A macro
word is a function that represents a compile time action, which eventually
results in machine code. In this manual we abbreviate these names to word
and macro respectively.

macro

: increment \ n -- n+1

1 + ;

forth

: double-increment \ n -- n+2

increment

increment ;

The words macro and forth switch between macro word and procedure word
definitions respectively. In the code above, increment is a macro while
double-increment is a procedure word. The backslash character \ is used
to start a line comment.

One way to view the Forth is as a macro assembler. There is a fairly di-
rect relationship between a program text and compiled machine code. I.e. +
is the machine’s addition operator. Compared to a traditional macro assem-
bler, macros do not only expand to asembly code, they also recombine with
previously generated assembly code. In the example above, the procedure
word double-increment corresponds to the code

double-increment:

addlw (1 1 +)

return 0

4

Compared to standard Forth, the Forth thus uses a simplified implicit
metaprogramming syntax. Standard Forth uses explicit metaprogramming
in the form of the words [and] which switch between compile and inter-
pret mode. Here, the programmer does not explicitly indicate which code
will run at compile time. Instead, the programmer decides only which words
are instantiated and which will be inlined using the forth abd macro sec-
tions respectively. All compile time behaviour is implemented using rewrite
rules, which are specified outside of Forth programs. More about that later.
Most compile time computations are based on partial evaluation. If possible,
some macros perform computations instead of generating code to perform a
computation at program run time.

The example above illustrates this use of partial evaluation. The double
occurence of the word increment has been partially evaluated to the ma-
chine operation addlw (1 1 +). The code between parenthesis indicates a
function that can be evaluated at compile time, here producing the numeric
value 2. The machine instruction addlw ADDs its Literal argument to the
Working register representing the top of the data stack.

Partial evaluation is an optimization technique often used in the imple-
mentation of functional programming languages. This approach works for
The Forth because it is possible to interprete a subset of the procedural
Forth dialect as a purely functional stack language based on function com-
position, and the realization that function composition is associative. This
means that the time at which function a composition occurs becomes a pa-
rameter to play with. This makes it possible to move some of the composition
to compile time, as is shown in the example above. Composition at run time
is implemented by the target machine’s instruction flow.

However, it is not correct to call this partial evaluation in the strict sense,
because the host’s type system is different from the target’s. Let’s go back
to the example (1 1 +) above. The integer operation + when it is done
at compile time has infinite precision. The same goes for the other integer
arithmetic operations. In order to be able to represent the result on the
target, results of computations need to be truncated to the data word size,
which is 8 bits for data and 16 bits for code addresses. This technique enables
the use of arithmetic operations that are not available at run–time in a way
that is fairly transparent: it is possible to read source code looking only at the
high level meaning of code, without worrying when the evaluation happens.

In order to effectively write programs, the programmer does have to worry
about whether a certain construct is compilable. In practice however, this is

5

quite straightforward. One way of looking at the approach is to view proce-
dural The Forth as the projection of a clean purely functional, compositional,
high–level language, onto a restricted procedural semantics.

The partial evaluation of arithmetic expression is but one example of
this powerful construct. By relaxing the requirement that all macros need
to be compilable in isolation, one can use macros to construct language id-
ioms. Idioms are sequences (compositions) of macro words that yield some
compilable construct. A non–compilable construct is called an ephemeral
macro. An example of an ephemeral macro is begin. It is not compilable
without a balanced again or until. This approach enables the use of high
level compile–time operations as long as they eventually lead to constructs
representable in low–level form, or can be projected to some representable
construct, as is the case for numbers.

2.2 Tool Chain

In Staapl, the meta–programming and code generation occurs on a system
which is different from the one executing the final machine code. Two com-
puter systems are involved: the host system runs a compiler program to pro-
duce compiled programs from source code while the target system eventually
executes these compiled programs. The main reason for this distinction is of
course the lack target resources to support the tool chain.

The host–target distinction is important from the point of interaction.
Procedure words exist physically on the target chip in the form of machine
code, and can be executed interactively. Macro words exist only in the trans-
lation phase from source code to machine code, and have no direct represen-
tative as an accessible code word, and as such cannot be executed. However,
The Forth includes the possibility of executing macros that produce con-
stant values, as if they were present in compiled form. Similarly, some basic
arithmetic operations are simulated if they are not instantiated as machine
code.

2.3 Factoring

The most compelling property of Forth is its ease of performing composition:
syntactically, a program is merely a concatenation of the names of sub–
programs, represented as words. If a sequence of words occurs in more than
one place in a program, one can give a name to the sequence, and substitute

6

the occurrence of the sequence in the source code by the newly defined name.
This technique of program evolution is called (re)factoring, and is essential
for controlled growth.

In short, when a pattern emerges in the source, it is time to increase the
abstraction level and perform some correctness preserving program transfor-
mations to isolate the code pattern and give it a name. In Forth this usually
means to change the order of some words so a sequence can be cut out and
replaced by a single name referencing a procedure or macro.

Factored procedure words are important because they allow physical (on
chip) code reuse, which limits the necessary target code space. Factored
macro words are important because they allow the construction of language
features that are not expressible as a composition of procedure words.

Macro words can be composed just as easily as procedure words. A
category of words necessarily implemented as macros are control words which
change the flow of control to something else than the default sequential word
execution. Another example is optimization; some macros can be combined
to code that is simpler or has more efficient representation than the sum of
the parts. A third example in is the use of idioms, which are sequences of
macro words that behave as if they were simply composed words, but have
only a meaning when combined in a certain way, allowing the expression
of constructs that are impossible to express as procedures. Compile time
computations have access to a type system that is substantially richer than
the raw machine words used at run time.

3 Programming Model

The Forth is a compiled language, and works without a run–time kernel. A
program is defined in terms of composable macros. Compilation of a The
Forth program is a function which maps a source file and a dictionary to an
updated dictionary and a chunk of binary machine code. It is factored into
the following steps:

• Parsing of program text into macros and procedural code.

• Construction of an extended compiler from the base compiler and the
named macros.

• Compilation of the code body to assembly language, using the extended
compiler.

7

• Construction of dictionary items for the procedural code, and assembly
of binary machine code, statically bound to functionality represented
by the updated dictionary.

The dictionary of target words is a symbolic index into binary target
code. It contains information necessary to execute code during interactive
development.

There are two main ways of structuring the namespace of applications.
One is built on top of PLT Scheme module system which allows the construc-
tion of a program as a directed acyclic graph of component modules, each
with its own namespace.

Alternatively, following the more traditional Forth style, programs can
be constructed incrementally in linear layers in a single flat namespace that
allows redefinition of words. All code is early bound, which means upper
layers cannot influence functionality in lower layers. All late binding needs
to be implemented explicitly using vectored code.

The Forth uses partial evaluation as an interface to the metaprogramming
system. This is implemented using primitive macros expressed as machine
code rewrite rules, and a concatenative composition mechanism.

4 Language Features

This section deals with language features that are different from standard
Forth.

4.1 Partial Evaluation

In order to see how partial evaluation works, it is a good idea to look at
how it is implemented. The transcript below shows the effect of incremental
compilation. Compilation works by pushing data on a compilation stack.
The data on this stack is dynamically typed, with the type indicated by a
symbolic type tag.

We start with entering a number

>> 1

qw 1

8

The first line is the compilation input, the remaining lines are the contents
of the compilation stack. The type tag qw indicates a Quoted Word. In order
to be compilable, the word needs to be reducable to a numeric value. We go
on by entering another number.

>> 2

qw 1

qw 2

There are now two numbers on the compilation stack. Next we enter an
operation.

>> +

qw (1 2 +)

The result is a quoted word, where the word can be reduced to a number by
evaluating a computation. This is the simplest example of a compile–time
computation2.

When a compilation is done, all the data left on the compilation stack
needs to represent a compilable program. In this case, we have a single
quoted number 3, which is certainly compilable. Let’s start over with a clean
compilation stack and type just the operation.

>> +

addwf POSTDEC0, 0, 0

This is quite different. What is present on the compilation stack is an assem-
bly program that will perform the computation +. It works by adding the
second word on the run time data stack to the working register, and then
popping off the second word. Popping is done by a post–decrementing read:
read the value pointed to, then decrement the pointer. This is equivalent to
popping the 2 top numbers, adding them and pushing the result.

These two examples illustrate how partial evaluation is implemented: by
inspecting the compilation stack, the macro + knows what code to gener-
ate: either the value can be computed at compile time, and the resulting
program just quotes the resulting number, or the computation has to be

2Note that his gives a clear example of the relation between the Scat and the Coma
languages. The stack of machine code is simply used as the parameter stack of another
stack language. For the arithmetic operators, Coma is basically Scat looking inside the
tagged data structures.

9

postponed until run time, in which case the appropriate machine instruction
is generated.

In the case of the binary operator + there is a third possibility: one of its
operands might be known at compile time. Starting with a clean compilation
stack, providing only one argument yields

>> 1 +

addlw 1

which adds the number 1 to the working register, which implements the top
of the data stack. The resulting code is still an operation, but it is less
general than the one before. The composition 1 + has been evaluated to a
single machine instruction3.

4.2 Nested Constructs

Because Forth syntax is merely a succession of words, creating nested struc-
tures requires some kind of stack4. For procedure word nesting, this is the
return stack which is active at run–time. It records where to continue after
terminating the current procedure.

For nested language structures created using macros, this stack is called
the macro stack or control stack and is accessible at compilation time (macro
execution time) using the macros >m and m>. All words that implement nested
structures are defined in terms of these two words. For example

macro

: begin sym dup >m label: ;

: again m> jump ;

3This illustrates that while the macro language is purely concatenative, the operations
of concatenation and compilation do not commute. In other words, compilation preserves
semantics but the machine program resulting from concatenation of individually compiled
macros might be different or might not even exist when trying to separate an idiom. Also,
in the presence of projected semantics for number operations, even the semantics is slightly
different.

4For the coma Coma language, which has an s-expression syntax and inherits program
quotations from Scat, these structured programming constructs are not necessary because
they can be replaced with higher order macros thus keeping the language purely concate-
native. For the implementation of the higher order forms for conditional execution and
looping however, the mechanism described here is used.

10

The macro begin creates a new code identifier, duplicates it and places a
copy on the macro stack before creating a jump target using that identifier.
The word again pops the symbol from the macro stack, and uses it to compile
a jump instruction. As long as there is a balancing again for every begin,
the resulting code is compilable.

Too many occurences of begin lead to non–compilable constructs because
the macro stack is not empty. Too many occurences of again lead to non–
compilable constructs because of macro stack underflow: m> will be evaluated
without values on the stack.

In the definition of begin there is the word sym, which creates a new
symbol. In an of itself sym is not compilable, because the symbol value is
not representable on the target system. However, the words label: and
jump will consume symbol values to yield constructs that are compilable:
assembler labels and jump instructions.

It is legal to use >m and m> anywhere in macro code as long as the eventual
use is balanced. A typical use is in metaprogramming constructs which use
a literal value multiple times. For example, a macro that converts a number
to a two byte value can be written as

macro

: lohi \ number -- low high

dup >m

#xFF and

m>

8 >>> ;

This will take a literal value, duplicate it and put one copy on the macro
stack. The low byte literal is computed by applying a bitmask. The high
byte literal is computed by retreiving the value from the macro stack, and
shifting its bits to the right by 8. Note that the shift operator >>> is only
defined at compile time and is thus an ephemeral macro. If the macro lohi

occurs in a code composition after a computation that yields a literal value,
the composition is compilable. The computation runs at compile time so the
intermediate results use infinite precision: there is no 8–bit limit for data
representation.

11

4.3 Named Macro Argument

Instead of using the macro stack, in some cases it is a better idea to use local
names in macro definitions5. Local names are sometimes frowned upon be-
cause they make factoring more difficult if not used wisely. However, writing
low level macros it can sometimes be convenient to reduce the stack shuffling
that is otherwise necessary. This is the same macro expressed with the syn-
tax for local names. This binds the words between bars | to the respective
macro stack literals, associating the top literal to the rightmost word.

macro

: lohi | number | \ -- low high

number #xFF and

number 8 >>> ;

4.4 Quoting

By default, all symbolic words refer to their primary semantics. Either this
happens by compiling a reference to an on–target precedure word, or the
execution of a macro which will inline code or perform other compile time
operations. This primary behaviour can be changed only by quotation.

The word ’ pronounced tick or quote will wrap a reference to the follow-
ing word as a literal value that can be manipulated at compile time in the
same manner as numbers or other compile time data objects. This reference
is represented by the macro word that compiles the behaviour of the word.
If such quotations survive to the target, they will be encoded as a number
representing the address if the procedure word that corresponds to the ref-
erence. If the reference corresponds to a macro, it has to be unquoted using
one of the higher order macros like run, execute, compile, . . .

The function of the word run is to simply undo the effect of the quote.
If foo is defined, ’ foo run is equivalent to foo. If a literal value does not
precede run, the semantics is delegated to the procedure word ~run6. The
execute word has a lower level semantics and operates on addresses only,
while compile is like run but won’t delegate to ~run.

5For Forth procedures, local names are not supported.
6This is a general pattern. Macros that perform partial evaluation will delegate to a

procedure identified by a tilde prefix. In the core compiler, these words are stubs that can
be redefined whenever the run–time behaviour is implemented, but this is not necessarily
so.

12

4.5 Structured programming

Forth control words are implemented in terms of conditional and uncondi-
tional jumps to (anonymous) target code labels. Anonymous target code
labels can be created at compile time using the word sym. Passing such a
value to label: creates a jump target. Obviously, this can happen only once
per unique code label. Passing the label to jump creates an unconditional
jump, passing it to or-jump creates a conditional jump if false. Togehter
with the macro m-swap whcih exchanges the two top values on the macro
stack, these words can be used to create the classical structured programming
words.

macro

: if sym dup >m or-jump ;

: else sym dup >m jump m-swap then ;

: then m> label: ;

: begin sym dup >m label: ;

: again m> jump ;

: do begin ;

: while if ;

: repeat m-swap again then ;

: until not while repeat ;

This is a specification of the control flow words with stack effects. The effect
on this stack is indicated as here as m: < in > -- < out >. Similarly using
x: for the auxiliary stack 7.

if \ ? -- m: -- label

else \ -- m: l0 -- l1

then \ -- m: label --

for \ count -- m: -- label x: -- loopcount

next \ -- m: label -- x: loopcount --

begin \ -- m: -- label

7Because the return stack a limited resource on PIC18 and much wider than the data
word, an extra byte stack is used for storing temporary data.

13

again \ -- m: label --

until \ ? -- m: label --

while \ ? -- m: l0 -- l0 l1

repeat \ -- m: l0 l1 --

4.6 Booleans

In the Forth all predicates are macros that can be optimized into efficient
machine language conditional branch and skip instructions. By convention
macros that produce boolean values are postfixed by a question mark ? char-
acter. The macro if can consume these ephemeral boolean values and gener-
ate the appropriate conditional jump instruction. Take a (simplified) example
from serial.f the serial port driver

macro

: rx-ready? \ -- ?

PIR RCIF high? ;

forth

: receive \ -- byte

begin rx-ready? until

RCREG @ ;

The macro rx-ready? generates an ephemeral boolean derived from the bit
at position RCIF (ReCeive Interrupt Flag) in the special function register
PIR (Peripheral Interrupt Register). This boolean is consumed by the until
macro word, which is eventually implemented in terms of the if macro word
(which itself is implemented in terms of the primitive or-jump word). This
code illustrates a useful pattern: abstract each condition in a macro, naming
it appropriately with a postfix question mark to make the code that uses the
condition more transparent.

4.7 Tail Call Optimization

A procedure word followed by the ; or exit instruction is translated into
a jump. This allows for the use of recursion to write loops, without over-
flowing the return stack. The following code does the same as receive in

14

the previous example by calling itself recursively until the condition becomes
true. This example has multiple exit points (see below).

: receive

rx-ready?

not if receive ; then

RCREG @ ;

4.8 Predicates for Inspection

The Forth contains a collection of predicates that will produce a boolean
without consuming the original arguments. This contrasts with some stan-
dard Forth predicates. These predicates are named by appending a question
mark ? to the standard Forth name. For example:

= \ a b -- ?

=? \ a b -- a b ?

While these constructs are somewhat essential for the factorization of efficient
control macros, apparently they are a bit confusing for people used to Forth.
So beware!

4.9 Indirect memory access

The PIC18 architecture has separate instruction and data memory spaces.
The Forth uses two pointer registers to access these memories: the a (Ar-
ray) register accesses volatile RAM, and the f (Flash) register accesses non-
volatile programmable ROM memory. Indirect addressing using the @ and !

words is only supported for global variables, which are implemented as literal
addresses. Indirect access can be implemented by overriding the ~@ and ~!

words.
Indirect access through the a register might be more convenient and effi-

cient. The words @a, @a+, @+a and @a- use the 4 relative addressing modes on
the PIC18: indirect, postincrement, preincrement and postdecrement. The
a register can be accessed through the low and high bytes al and ah. An
abbreviation for storing both high and low words is provided:

: a!! \ lo hi -- | store 2 bytes in the a register

ah ! al ! ;

15

Similarly, to read Flash memory, the words @f, @f+, @+f and @f- can be
used. The f register can be accessed similarly through the byte parts fl and
fh.

5 Control Flow

This sections deals with ways to escape from sequential code execution in
addition to the standard structured programming idioms. The unifying idea
is that you can use two stacks to roll your own control abstractions. The
return stack is used to record nesting state at run time and to implement
computed jumps. The macro stack is used for compile time computation of
control flow.

5.1 Multiple Entry and Exit Points

Since procedure words are just assembler labels representing machine code
addresses, and straight line code is translated to straight line machine code,
there is no reason for a word not to have multiple entry points. In fact, this
can be quite convenient. The following code defines two words.

: double-increment

1 +

: increment

1 + ;

The second one increments the top of stack value by one, while the first one
increments the top of stack value by two. The code in the first definition just
falls trough to the last definition as if the sequence “: increment” wasn’t
there. Similarly, a procedure word can have multiple exit points. In the code

: safe-turn-on

problem? if ; then turn-on ;

the word turn-on is executed if the problem? condition is false. If the
condition is true however, the word exists trough the ; word inbetween if

and then.
Macros can’t have multiple entry points, and need to use explicit tail

calls to get to this behaviour. However, they do support multiple exit points,
where the exit ; is implemented as a jump past the end of the code generated
by the macro.

16

5.2 Vectors

A vector is a variable containing a word address. The interface consists of
two words

invoke \ var -- | execute the code stored in var

-> \ var -- | set var to point to code

and a parsing word

vector \ <name> | create a vector variable

The word invoke is implemented as 2@ execute/b, which fetches 2 bytes
from a double variable and passes them to the execute/b word which ex-
ecutes the code pointed to using byte addressing. The word -> stores the
address of the code following it in the variable, and then exits the word in
which it occurs. So it will not execute the code after the arrow, jus change
the value of the variable. I.e. the code

vector current-op

: will-inc current-op -> 1 + ;

: will-dec current-op -> 1 - ;

defines a word will-inc that when executed changes the subsequent be-
haviour of current-op invoke to 1 +. Similarly, the word will-dec changes
the subsequent behaviour to 1 -. By itself, the words will-inc and will-dec

don’t do anything except for setting the value of the vector variable current-op:
the word -> is an exit point for these setter words.

As the name in the example indicates, vectors can be used to set current
behaviour, folling the Forth mantra “Don’t set a flag, set behaviour.”

5.3 State Machines

The route word is a different mechanism for implementing dynamic be-
haviour. It can be used to construct byte code interpreters using dispatch
tables. While vectors are generic because they can point to arbitrary code,
byte codes are more specific: they map state representation (a number) to
behaviour by using explicit interpretation.

Vectors work well if there is a small number of invokation points and
a large number of state changing words, or for implementing late binding.

17

When the number of alternatives is fixed, i.e. in the implementation of finite
state machines, byte codes are often easier to use. The use of route is best
illustrated with an example of how it would appear in code:

: abcd \ bytecode --

route

aaa ., bbb ., ccc ., ddd ;

Here the word ., (a sideways semicolon) behaves as the ; word, while telling
the compiler that the code after it is reachable, so it won’t be optimized
away. Because there is really no other use, the word ., can be seen as a
jump table separator. With this code the code 0 abcd is equivalent to aaa,
1 abcd is bbb, etc. . .

This works only when the words before the separators are procedure
words. For a procedure aaa, the sequence aaa ., consists of a single jump
instruction due to tail call optimization. The word route simply adds its
argument to the base address of the table8.

5.4 Cooperative Multitasking

The heavier approach to sequencing is to use tasks. State machines can be
the right solution for some problems that do not require recursion. When
procedure nesting is required but a piece of code does have some control state
in isolation of other code, tasks are a good solution. A task has a separate
execution thread.

Each task’s state consists of a set of stacks. More specifically a return
stack, a data stack and an auxiliary stack. Usually it is a good idea to also
save a separate copy of the a and f registers per tasks. The Forth contains
primitives to implement your own multitasker in the file pic18/task.f. It
implements the words suspend, resume and swaptask.

suspend \ -- task | freeze current task context

resume \ task -- | make task context current

swaptask \ task var -- | swap task with the task in var

8This is a low–level construct that is easily exploited for creative use. Every instruc-
tion slot in the jump table can be filled with anything that produces a single machine
instruction. It is also possible to leave out the separators to just jump into a sequence of
words skipping the firsts couple.

18

Usually the word that performs task switching is called yield. In the
common case where there are only two separate tasks, this word simply
switches between the two tasks, using a single variable to point to the repre-
sentation of the other task:

variable other

: yield

suspend

other swaptask

resume ;

The difficulty in using tasks on a low level is how to create them. This
generally requires manually allocating resources for the tasks’s stacks. For
the 2–task case the other task can be booted by the word

: start-other-task

suspend other ! \ suspend current task

#x10 rp ! \ use half of the hardware return stack

#x50 xp ! \ for rp, and use a region of RAM for

#x60 dp ! \ the byte stacks dp, xp

task-init-code ; \ start the task’s code body

This discards anything stored in the other variable, and performs manual
context switching by changing the 3 stack pointers to a free memory location,
before running the task’s initialization code.

A more complicated scheduler can be implemented by replacing the code
between suspend and resume in the yield code above. For example, code
from pic18/buffer.f could be used to create a round-robin scheduler which
executes a couple of tasks in a circular fashon9.

5.5 Tasklets

If the number of tasks is small, and there is a clear hierarchy, tasklets can
be used, which have the semantics of low priority interrupts. Whenever a
machine interrupt handler finishes, it can spawn a tasklet by simply jumping

9For PIC18, the hardware return stack is a fairly limited resource. If a lot of tasks are
required, explicit copying of the stack might be necessary. An alternative is to write a VM
on top of the native Forth which doesn’t use the hardware stack. There is a draft version
of a 16–bit direct threaded interpreter available.

19

to some code after re–enabling interrupts. As long as the tasklet finishes
before any other invokation of the ISR spawns a new one, this system is
stable.

If the tasklet is allowed to pre–empt the main task, it doesn’t need a set
of stacks of its own, since it is never in a running state if the main task is
active. Tasklets are thus more efficient than genuine tasks.

An example: you have a receiver consisting of a main application loop,
a timer interrupt handler and a tasklet. The interrupt handler performs
analog–to–digital (ADC) conversion and a single filter step. The tasklet
recovers the next symbol from the accumulated filter state and possibly
performs some synchronization operation after say 16 timer interrupts have
elapsed. The main application loop reads full bytes from an input buffer.

5.6 Procedures or Macros?

At several points during the development of reusable library code I ran into
the question: am I going to use macros or procedure words. To answer the
question generally, it should be translated to: should this code be fast or
small.

To understand the main reason why this question pops up it is necessary
to look at the PIC architecture, where indirect addressing is quite expensive.
It is obvious that the PIC has a bias toward static objects: it has quite some
provisions to deal with memory addresses that are known at compile time, so
they can be inlined in the code. However, dynamic access which is necessary
for object abstractions requires the use of the FSR registers. Of these there
are 3, and they are used as data stack pointer, auxiliary stack pointer and
the a register. Whenever an indirect access occurs, the a register needs to
be saved, set and restored10. As a consequence, dynamic objects are about
an order of magnitute more expensive than static ones.

This bias toward static code eventually reflects in the design of the The
pic18/ library code: it has a lot of provisions for static objects in the form of
macros, especially at points where speed might be an issue, for example the
buffer code in pic18/buffer.f. These are somewhat harder to use because
they often need to be instantiated explicitly.

10To get rid of save and restore it is possible to assume throughout the program that
the register can get clobbered. However, this is a global constraint which makes it harder
to enforce.

20

5.7 Compilation Unit

The Forth can use PLT Scheme’s hierarchical module name management
tools. However, for static low–level code it is sometimes convenient to link
code components by loading them into a single name space. This is essentially
an extra composition mechanism, on top of parameterized instantiation of
macros.

I.e. The interpreter that supports target interaction is built like that. The
code in pic18/interpreter.f references the words receive and transmit.
In order for this code to work it needs to be included into a namespace using
which has these words defined. For this the parsing word load can be used.

6 Essays

Some related articles.

6.1 Effective 8–bit Programming

Nothing limits Purrr to be implemented for larger word sizes. However, for
PIC18 the language is organized in a way to make 8–bit data cells practical,
while retaining a larger (machine specific) return stack size.

The ANS Standard explicitly prohibits an 8–bit cell size, setting the min-
imum size at 16 bits. It requires data stack elements, return stack elements,
addresses, execution tokens, flags, and integers to be one cell wide. While the
PIC18 Forth is non–standard for a lot of different reasons, this requirement
really kills any hope for standard compliance. However, it is my opinion that
an 8–bit Forth has a reason of existence, despite the limitations of different
code and data cell sizes.

The Forth contains some 16–bit library routines, but using them can
be cumbersome. The Staapl distribution contains a direct threaded 16–bit
virtual machine written on top of the native 8–bit Forth which does enable a
more standard approach. It comes with its own interaction system (currently
broken in 0.5.x).

In the PIC18 Forth the 21 bit wide hardware return stack is used. Only
the low 16 bits are used, leading to a representation of a procedure word as
a two cell value. Because of its larger size and fixed depth (only 31 words),
a separate byte stack called the x stack or auxilary stack is used. I.e. this

21

stack is used to store the loop counter in for . . . next loops. It can be used
as an alternative to the return stack for temporary value storage.

The problem points when working with 8 bit data words can be identified
as limited precision for mathematical operations, limited practical data buffer
sizes, limited loop size, and difficulty of representing code as data.

For math, you’re basically out of luck and need to resort to tricks. The
Forth has some 16–bit math routines, but math–intensive applications usu-
ally work better on larger word size (real or virtual) machines, and as such
are not considered part of the application domain. Building a VM or macro
language on top of the PIC18 Forth is the way to go here.

On the other hand, don’t forget that logic is your friend! A lot of problems
can be solved by creatively using and, or, xor, -, + and the shift and rotate
operations together with the carry flag. The Forth exposes the these low level
machine details to give you the means to create your own abstractions on
top of them, using either procedure or macro words. Note that hexadecimal
numbers are specified like #xF0, and decimal numbers like #x11110000. The
Forth does not use a base word: all numbers are decimal, unless they are
indicated as hexadecimal or binary. Also note that the PIC18 contains a
hardware multiplier for 8 × 8 → 16 unsigned multiplication, which can be
used to build your own multiplication abstraction. The Forth18 contains
some code for a 24 unsigned MAC operation to implement digital filters.

The problems caused by large data buffer sizes can usually be avoided by
proper abstraction. In addition the intended target chips usually have small
memory sizes, so large buffers are rare. When they do occur, it is usually
easier to perform buffer management on a byte and a block level: adding
hierarchy to a solution can often not only solve a word size problem, but also
bring up solutions that are easier to write down. The same argument goes
for limited loop sizes. If you need a for . . . next loop that executes more
than 256 times, just nest two of them. Even better: put the inner loop in a
separate word and try to see if the code now tells you why you’re better off
using this hierarchical solution in the first place.

For the problem of effectively representing code as data, byte codes bring
a simple solution. A byte code can represent up to 256 different words.
The easiest way to do this is to use the word route to construct a jump
table. Here is a code fragment from the boot interpreter taken from the
pic18/interpreter.f file. It interprets numbers (tokens) ranging from 0 to
15 by mapping them to code.

22

: interpret \ token --

#x0F and route

., receive ., transmit ., jsr .,

lda ., ldf ., ack ., reset

n@a+ ., n@f+ ., n!a+ ., n!f+ .,

chkblk ., preply ., ferase ., fprog ;

The route here is used to perform something akin to procedure table
lookup. The word takes a single argument n and jumps to the n–th machine
word following itself. The table above contains 16 machine word entries. To
make sure jumps remain inside the table, before route the top 4 bits of the
token are chopped off using and. All words in the table, except the empty one
and reset, revert to procedure words, for which which the idiom receive

., compiles to a single machine word jump instruction.
The first slot is empty: a ., word by itself compiles to the RETURN

instruction, which in a route table acts as a no–op. The reset word is a
macro that compiles to the RESET instruction, also taking a single machine
word slot.

6.2 The E2 Bus

The idea of the E2 bus is to provide data and power, and a simple synchro-
nization mechanism over just 2 wires, in a way that enables bi–directional
communication. Together with the The Forth boot monitor this is intended
as a programming and debugging network for developing multi–target ap-
plications. The connector for this network can be combined with the power
connector in stand–alone mode, and is thus non–invasive. The circuit board
requires a diode for power rectification, a capacitor large enough to span a
single bus timing cycle, and a possibly interrupt enabled I/O pin.

The bus is defined in terms of a 4–phase state machine for receive and
transmit modes. The logic encoding uses a 8N1 state machine, where the
redundant stop bit can be used for other purposes. In total, a single byte
transfer consists of 4× 10 = 40 elementary clock pulses.

On the master side, operation is very straightforward. The only thing
that is needed is an elementary clock event. The idea is to have a central
hub that can drive multiple slaves, each on a separate pin.

Because the bus is half–duplex, synchronization is necessary in the data
protocol to prevent bus collisions. This is intentionally left unspecified. For

23

the The Forth bootloader protocol this consists of a Remote Procedure Call
(RPC) message protocol: master initiates transfer, slave acknowledges trans-
fer with a status byte and/or data.

24

